Chapter 1. Safe Numerics

Robert Ramey
Copyright © 2012-2018 Robert Ramey

Subject to Boost Software License

Table of Contents

O [oo [0 1o o TS SPPPTTRSPPPI 4
S O o= o PSSP 4

B2 o 11 o o PSSP 5

0 TR T TV 1 ALY o4 PSP 5

R Ao o [g B == = PSP 6

ST o o 0T = 1101 1] £ 6

TS ol o = PRSP 7

2. Tutorial and MOtiVating EXAMPIESciiiiiii e e e e e e e e e e e e e e e e e et e aaa s 7
2.1. Arithmetic Expressions Can Yield INCOMECt RESUITScouuiiiiiiiiii e e e e e e e e e 7

2.2. Arithmetic Operations Can OVErflow SHENHYiiiiii e e 8

2.3. Arithmetic on Unsigned Integers Can Yield INCOrreCt RESUILSccouiiiiieiiiiiiie e e 9

2.4. Implicit Conversions Can Lead t0 ErroneouS RESUITScccuuiiiiiiiiiii e e e e e e e e e 10

2.5. Mixing Data Types Can Create SUDLIE EITOISciiuiiiii e e e e e e e 12

2.6. Array Index Value Can EXCead ArIray LiMitSciiuiiiiii it e e e e e e e e e et e e e e eaaees 13

2.7. Checking of Input Values Can Be Easily OVErlOOKEdooiiiiiiiiiii e 14

2.8. Cannot Recover From ATTNMELIC EFTOISvieiii et e e e et n e e e e e e eataeeeanes 15

2.9. Compile Time ArithmetiC iS NOt AIWaAYS COITECEuuiie e e e e e e e e e e e e e aenns 16

2.10. Programming By COntraCt iS TOO SIOWcuuuiiiiiiiiieiiie e e e e e e e e e e e et e e et e et e e et e e et e e e e eanaas 17

3. Eliminating RUNIIME PENAILY ... ciiiiiiii e e e e e e e r e e e e et e e e et e e et e e et e e et e e aa e eatneeenneeenns 19
3.1. Using safe range and SafE [ITEralccouiiiiiii e 20

3.2. Using AUtOMaLiC TYPE ProMOLIONiiiiiiiieei e e e e e e e e e e e e e et e et e e et e e et e e s ta e e et e e et e e et e eaneeanns 21

TG I DT 0 A] o] {0 == 24

R O IR (1o == S 25
4.1, Composition With Other LIDrariEsciuuiiiii e e e e e e e e et e et e e et e e aan e eens 25

4.2, Safety Critical Embedded ControllEroiiiii e e e e e e e e eees 27

HOW @ SEEPPEr IMOLOT WOTKS .. .oeeiiii it e e e e e e e et e e e et e e et e e et e e e ta e eaaneeanns 27

LT =] o 1 T 0o LS 28

L L= (g 10 N =" [o 29

(©0 gl o L T aTe JRe g TR 1 0TI L= 2q (o] o P 29

Trapping Errors a ComMPIlE TiME ..u.iun i e e e e e e e e e et e e et e e et e e et e e et e eaanaees 34

Rl 0010 Y 44

LT = - o (o | (01U o 45
O Y/ o L=T == o (8] 1= 101 01 C P 45
L3 I 101091 o PP 45

[0 1=STox 11010 o 45

[0 7= e o PPN 46

F NS o T (= o I 1Y/ o= 46

V= Lo g o] === =T T3P 46

1o o (= PP 47

=0 L= PN 47

Note on Usage Of st d: i NUMBI T C_l i M 1S 1uuiiiiiiiiii e e e e e e e e e e et e e e enas 47

http://www.boost.org/LICENSE_1_0.txt

Safe Numerics

L 1 1= T S 1P 48
[0 1=STox 11010 o 48

RS 1 0= 141 Ao SO PRTRN 48

[N To] 7= e o PPN 48

V= Lo g o] === =T o TP 48
oo (= PP 49
=0 L= PN 49

LR IS 1= N U T 4 o2 PSP 49
[0 1=STox 11010 o 49

RS 1 0= 141 Ao PPN 49
[0 7= o) o PPN 50

V= Lo g o] === =T o TSP 50

F 01T = =0 SRR 51
oo (= PP 51
1= o L= PN 52

B.4. PromOtiONPOlICY P> ... e e e e e e e e e a e ars 52
[0 1=STox 1100 o S 52
[0 7= e o PP 52

V= Lo g o] === =TT PP 52
oo (= PP 53
1= o L= PN 54

B.5. EXCEPLIONPOIICYSEP>ui i et e e e e e e e e e 54
[0 1=S'ox 11010 o 54
[0 7= e o PPN 54
V2= o g o] === T T3P 54
dispatch<EP>(const safe_numerics error & €, CONst Char * MST) ...ucvvvneiiinieiieeiiiieeie e e e e e e e e e e eaaeens 55
7o o (= PP 55
=0 L= PPN 56
)Y/ == PRSP 56
8 = 1= I o o T PP 56
[0 1=S'ox 11010 o 56
oo (= I o) PP 56
[0 7= e o PPN 56

F NS o T = o I 1Y o= 56

LI 1o oY = = 1= (= £ 56

V= Lo g o] === T T3P 57

Gz 1o)== T 57
=0 L= PN 59

7.2. safe_signed range<MIN, MAX, PP, EP> and safe_unsigned_range<MIN, MAX, PP, EP>c..cccoiveviieennns 60
[0 1=STox 11010 o S 60
[0 7= e o PPN 60

F NS o T (= o I 1Y/ o= 60

LI 1o oY = = 01 (= £ 60
oo (= I o) PP 60

V= Lo g o] === T T PP 60
LGz] o) L= T 61
= o L= PN 61

7.3. safe_signed literal<Value, PP, EP> and safe_unsigned_literal<Value, PP, EP>cccociiiiiiiiiin e, 61
[0 1=S'ox 11010 o 61
oo (= I o) PP 61

F NS o = o I 1Y o= 62

LI 1o R = = 01 (= £ 62
INNENTEA Valid EXPIrESSIONSvuiiiiieiii et et e e e e e et e et e e et e e et e e et e e et e e et e e et e e e tn e e aaeeaa e eetn e ranaerennns 62
LGz] o) L= T 62

Safe Numerics

MBKE_SaAf € | i 1 eral (N, PP, EP) ittt ittt sttt e e e e e e e e e e e e e e e e eas 62
=0 L= PN 62

4 == 1 63
[0 1=STox 11010 o 63
ENUM ClaSS SA@ NMUMIEIICS EITOTiuuuiiiii e eei et e et e e e e e e e e e et e e et e e et e e e tt e e et e e et e e et e san e eaaeeetnaeeanarees 63
ENUM Class SAf@ NUMENCS ACHIONScvueiiii e i ee e e e e e e e e e e e e e e et e e et e e et e e et e e et e ean e eat e eenneenens 63

S Ko T O PT 64
=0 L= PN 64

7.5. exception_PoliCYy<AE, IDB, UB, UV > ... i e e e e e e e e et e e e e e e e e e eaneees 64
[0 1=STox 11010 o S 64
[0 7= o) o PPN 64

LI 1o 2R = = 1= (= 64
oo (= I o) PP 65
INNENTEA Valid EXPIrESSIONSvuiiiiieiii et et e et e e e e e et e e et e e et e e et e e et e e et e e et e e stn e e aaeean e eetn e ranaerennns 65

[0 TgTox (L0 I] o= ox £ 65
Policies Provided by the lIDrarycc..oiiiiii e e e 66
1= o L= PN 66

7.6, PrOMOLION POIICIESu ittt e et e ettt r e e ettt e e e e et e e e e et e e e e et e e e e et e eeesennes 66
= YU PT 66

0 03 [oSSR 68
CPP<INE C, iNt S, Nt 1, Nt L, INE L L > ..o e e e e e r e e e et e e et e e eaneeeens 69

T (e oo TS = 70
LS I Yo=Y 4070 = 0101 1= 1 o] o P 70
LS e 0= o B (== U R 71
[0 1=S'ox 11010 o 71
[0 7= e o PPN 72

LI 1o oY = = 1= (= £ 72
oo (= I o) PP 72

V= Lo g o] === T o T3P 72
LGz] o) L= T 73

S N Ko T O 74
=0 L= PN 74

S © 1= o= o N 1100 1= o PP 74
[0 1=S'ox 11010 o 74

LI ST (8= 11 1€ 74
L0041 o] = Y/ PP 74

Gz 1o L= T 74

N[0 =S PP 74
Y110 015 1= 75

S N Ko T O 76
= o L= PPN 76

LS A1 11= V= L o PP 76
[0 1=S'ox 11010 o 76

LI 1] R = = 1= (= £ 76
[0 7= e o PPN 76

F NS o = o I 1Y o= 76

V= Lo g o] === T T PP 77
LGz] o) L= T 78
= o L= PN 78

LS o o0 1410 7= = R 78
Y110 015 = 78

[0 1=S'ox 11010 o 79
LY ST (8= 1= 1€ 79
L0041 o] = Y/ 79

Safe Numerics

Gz 1] o) L= T 79

=0 L= PN 79

O = g (ol gy 1 (o R I L PP UPPTRPPT 79
T 7 1= = o I N P 80
A = 0 T o T S U =P 83
12.1. saf e_base Only WOIKS fOr SCAlAr TYPES ... ccuuiiiiiieiiieeii et e et e e et e e e e e e et e e et e e et e e et e e et e e eaneeeanees 83

12.2. Concepts are Defined but NOt ENfOrCEA.iiuiiiiiii e e e e e e e e e eaen 83

T @ 1= gl e o [o T S 1PN 84

T N (g0 Y=o (o T= 0= 01 P 84
I L= 1= S oo PP 85
T 11 o] oo =0 Y/ P 85

1. Introduction

Thislibrary isintended as a drop-in replacement for all built-in integer typesin any program which must:
 be demonstrably and verifiably correct.
* detect every user error such asinput, assignment, etc.

* be efficient as possible subject to the constraints above.

1.1. Problem

Arithmetic operationsin C/C++ are NOT guaranteed to yield a correct mathematical result. This feature isinherited from the
early days of C. The behavior of i nt, unsi gned i nt and others were designed to map closely to the underlying hardware.
Computer hardware implements these types as a fixed number of bits. When the result of arithmetic operations exceeds this
number of bits, the result will not be arithmetically correct. The following example illustrates just one example where this causes
problems.

int f(int x, int y){
/1 this returns an invalid result for sone | egal values of x and y !
return x +vy;

It isincumbent upon the C/C++ programmer to guarantee that this behavior does not result in incorrect or unexpected operation
of the program. There are no language facilities which implement such a guarantee. A programmer needs to examine each
expression individually to know that his program will not return an invalid result. There are a number of ways to do this. In the
aboveinstance, [INT32-C] seems to recommend the following approach:

int f(int x, int y){
if (((y >0) & (x > (INT_MAX - y)))
[I ((y <0) & (x < (INT_MN - y))))
/* Handl e error */

}

return x +vy;

{

}

Thiswill indeed trap the error. However, it would be tedious and laborious for a programmer to alter his code in this manner.
Altering code in thisway for al arithmetic operations would likely render the code unreadable and add another source of potential
programming errors. This approach is clearly not functional when the expression is even alittle more complex asis shown in the
following example.

int f(int x, int vy, int z){

Safe Numerics

/1 this returns an invalid result for sonme | egal values of x and y !
return x +y * z;

This example addresses only the problem of undefined/erroneous behavior related to overflow of the addition operation as applied
tothetypei nt . Similar problems occur with other built-in integer types such asunsi gned, | ong, etc. And it also appliesto
other operations such as subtraction, multiplication etc. . C/C++ often automatically and silently converts some integer types

to othersin the course of implementing binary operations. Sometimes such conversions can silently change arithmetic values
which inject errors. The C/C++ standards designate some behavior such as right shifting a negative number as "implementation
defined behavior". These days machines usually do what the programmer expects - but such behavior is not guaranteed. Relying
on such behavior will create a program which cannot be guaranteed to be portable. And then there is undefined behavior. In this
case, compiler writer is under no obligation to do anything in particular. Sometimes this will unexpectedly break the program.
At the very least, the program is rendered non-portable. Finally there is the case of behavior that is arithmetically wrong to begin
with - for example divide by zero. Some runtime environments will just terminate the program, others may throw some sort of
exception. In any case, the execution has failed in a manner from which there is no recovery.

All of the above conditions are obstacles to creation of a program which will never fail. The Safe Numerics Library addresses all
of these conditions, at least as far asinteger operations are concerned.

Since the problems and their solution are similar, we'll confine the current discussion to just the one example shown above.

1.2. Solution

Thislibrary implements special versions of i nt , unsi gned, etc. which behave exactly like the original ones except that the
results of these operations are guaranteed to be either to be arithmetically correct or invoke an error. Using thislibrary, the above
example would be rendered as:

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>
usi ng nanespace boost:: nuneric;
safe<int> f(safe<int> x, safe<int> y){
return x +y; // throw exception if correct result cannot be returned

}

Note

Library code in this document resides in the namespace boost : : nuner i c¢. This namespace has generally been
eliminated from text, code and examples in order to improve readability of the text.

The addition expression is checked at runtime or (if possible) at compile timeto trap any possible errors resulting in incorrect
arithmetic behavior. Arithmetic expressions will not produce an erroneous result. Instead, one and only one of the following is
guaranteed to occur.

* the expression will yield the correct mathematical result
* the expression will emit acompilation error.
* the expression will invoke aruntime exception.

In other words, the library absolutely guaranteesthat no integer arithmetic expression will yield incorrect results.

1.3. How It Works

The library implements special versionsof i nt , unsi gned, etc. Named saf e<i nt >, saf e<unsi gned i nt > etc. These behave
exactly like the underlying types except that expressions using these types fulfill the above guarantee. These "safe" types are

Safe Numerics

meant to be "drop-in" replacements for the built-in types of the same name. So things which are legal - such as assignment of a
si gned to unsi gned value - are not trapped at compile time asthey are legal C/C++ code. Instead, they are checked at runtime
to trap the case where this (legal) operation would lead to an arithmetically incorrect result.

Note that the library addresses arithmetical errors generated by straightforward C/C++ expressions. Some of these arithmetic
errors are defined as conforming to the C/C++ standards while others are not. So characterizing this library as only addressing
undefined behavior of C/C++ numeric expressions would be misleading.

Facilities particular to C++14 are employed to minimize any runtime overhead. In many cases there is no runtime overhead at all.
In other cases, a program using the library can be slightly altered to achieve the above guarantee without any runtime overhead.

1.4. Additional Features

Operation of safe typesis determined by template parameters which specify a pair of policy classes which specify the behavior
for type promation and error handling. In addition to the usage serving as a drop-in replacement for standard integer types, users
of the library can:

» Select or define an exception policy class to specify handling of exceptions.

« Throw exception on runtime, trap at compile timeif possible.

e Trap at compile time all operations which could possibly fail at runtime.

» Specify custom functions which should be called in case errors are detected at runtime.

» Select or define a promotion policy class to alter the C/C++ type promotion rules. This can be used to

¢ Use C/C++ native type promotion rules so that, except for throwing/trapping of exceptions on operations resulting in
incorrect arithmetic behavior, programs will operate identically when using/not using safe types. This might be used if safe
types are only enabled during debug and testing.

* Replace C/C++ native promotion rules with ones which are arithmetically equivalent but minimize the need for runtime
checking of arithmetic results. Such a policy will effectively change the semantics of a C++ program. It's not really C++ any
more. The program cannot be expected to function the same as when normal integer types are used.

* Replace C/C++ native promotion rules with ones which emulate other machine architectures. Thisis designed to permit the
testing of C/C++ code destined to be run on another machine on one's devel opment platform. Such a situation often occurs
while developing code for embedded systems.

» Enforce other program requirements using bounded integer types. The library includes the types for ranges and literals.

Operations which violate these requirements will be trapped at either compile time or runtime and not silently return invalid
values. These types can be used to improve program correctness and performance.

1.5. Requirements

Thislibrary is composed entirely of C++ Headers. It requires a compiler compatible with the C++14 standard.
The following Boost Libraries must be installed in order to use this library

e mpll

* integer

» config

6

Safe Numerics

* tribool
» enable if

The Safe Numerics library is delivered with an exhaustive suite of test programs.

1.6. Scope

Thislibrary currently applies only to built-in integer types. Analogous issues arise for floating point types but they are not
currently addressed by this version of the library. User or library defined types such as arbitrary precision integers can also have
this problem. Extension of thislibrary to these other typesis not currently under development but may be addressed in the future.
Thisis one reason why the library nameis "safe numeric" rather than "safe integer” library.

2. Tutorial and Motivating Examples

2.1. Arithmetic Expressions Can Yield Incorrect Results

When some operation on signed integer types results in aresult which exceeds the capacity of a data variable to hold it, the
result is undefined. In the case of unsigned integer types asimilar situation results in a value wrap as per modulo arithmetic. In
either case the result is different than in integer number arithmetic in the mathematical sense. Thisis called "overflow". Since
word size can differ between machines, code which produces mathematically correct resultsin one set of circumstances may fail
when re-compiled on a machine with different hardware. When this occurs, most C++ programs will continue to execute with no
indication that the results are wrong. It is the programmer's responsibility to ensure such undefined behavior is avoided.

This program demonstrates this problem. The solution is to replace instances of built in integer types with corresponding safe
types.

/1 Copyright (c) 2018 Robert Raney

I

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at

/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreanr
#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

int main(int, const char *[]){

std::cout << "exanple 1:";

std::cout << "undetected erroneous expression eval uation" << std::endl;

std::cout << "Not using safe numerics" << std::endl;

tryf
std::int8_t x
std::int8_t vy
std::int8_t z;
/1 this produces an invalid result !

127;
2;

Z =X +Vy;
std::cout << "error NOT detected!" << std::endl;
std::cout << (int)z << " I=" << (int)x << " + " << (int)y << std::endl;

}
catch(const std::exception &) {
std::cout << "error detected!" << std::endl;

}

/1 solution: replace int with safe<int>

Safe Numerics

std::cout << "Using safe nunerics" << std::endl
tryf
usi ng nanmespace boost::safe_nunerics
safe<std::int8_t> x I NT_MAX;
safe<std::int8_t>y 2
safe<std::int8 _t> z

/1 rather than producing an invalid result an exception is thrown

Z =X +Y;
}
catch(const std::exception & e){

/1 which we can catch here

std::cout << "error detected:" << e.what() << std::endl

}

return O;

exanpl e 1:undetected erroneous expression eval uation

Not

erro
- 127
Usi n
erro
Prog

2.2.

usi ng safe nunerics

r NOT detect ed!
=127 + 2

g safe nunerics

r detected: converted signed value too |arge: positive overflow error

ram ended with exit code: 0

Arithmetic Operations Can Overflow Silently

A variation of the above iswhen avalue is incremented/decremented beyond its domain.

Il
Il

Copyright (c) 2018 Robert Raney

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at
/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i nc

#i nc

i nt

| ude <iostreanr
| ude <boost/safe_nunerics/safe_integer. hpp>

mai n(int, const char *[]){
std::cout << "exanmple 2:";
std::cout << "undetected overflow in data type" << std::endl
/1 problem undetected overfl ow
std::cout << "Not using safe nunmerics" << std::endl
tryf
int x = | NT_MAX;
/1 the following silently produces an incorrect result
++X;
std::cout << x << =" << INT_MAX << " + 1" << std::endl
std::cout << "error NOT detected!" << std::endl

}
catch(const std::exception &) {

std::cout << "error detected!" << std::endl
}
/1 solution: replace int with safe<int>
std::cout << "Using safe nunerics" << std::endl

try{
usi ng nanespace boost::safe_nunerics

Safe Numerics

saf e<i nt> x = | NT_MAX;

/1 throws exception when result is past naxi num possible

++X;
assert(false); // never arrive here

}

catch(const std::exception & e){
std::cout << e.what() << std::endl;
std::cout << "error detected!" << std::endl;

}

return O;

exanpl e 2:undetected overflow in data type
Not using safe nunmerics

-2147483648 | = 2147483647 + 1

error NOT det ect ed!

Usi ng safe numerics

addition result too |large

error detect ed!

When variables of unsigned integer type are decremented below zero, they "roll over" to the highest possible unsigned version of
that integer type. Thisis acommon problem which is generally never detected.

2.3. Arithmetic on Unsigned Integers Can Yield Incorrect
Results

Subtracting two unsigned values of the same size will result in an unsigned value. If the first operand is less than the second

the result will be arithmetically in correct. But if the size of the unsigned typesislessthan that of an unsi gned i nt, C/C++
will promote the typesto si gned i nt before subtracting resulting in an correct result. In either case, thereis no indication of
an error. Somehow, the programmer is expected to avoid this behavior. Advice usualy takes the form of "Don't use unsigned
integers for arithmetic”. Thisiswell and good, but often not practical. C/C++ itself uses unsigned for si zeof (T) which isthen
used by usersin arithmetic.

This program demonstrates this problem. The solution is to replace instances of built in integer types with corresponding safe
types.

/1 Copyright (c) 2018 Robert Raney

I

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at

/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreanr
#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

int main(int, const char *[]){

std::cout << "exanple 8:";

std::cout << "undetected erroneous expression eval uation" << std::endl;

std::cout << "Not using safe numerics" << std::endl

tryf
unsi gned int x
unsigned int y
unsi gned int z;

127;
2;

Safe Numerics

/1 this produces an invalid result
zZ =Yy - X
std::cout << "error NOT detected!" << std::endl
std::cout << z << " =" <<y << " - " << x << std::endl;
}
catch(const std::exception &) {
std::cout << "error detected!" << std::endl
}
/1 solution: replace int with safe<int>
std::cout << "Using safe nunerics" << std::endl
try{
usi ng nanmespace boost::safe_nunerics
saf e<unsi gned i nt> x 127;
saf e<unsigned int> vy 2;
saf e<unsi gned int> z;
/1 rather than producing an invalid result an exception is thrown
zZ =Yy - X
std::cout << "error NOT detected!" << std::endl
std::cout << z << " =" <<y << " - " << x << std::endl

}
catch(const std::exception & e){
/1 which we can catch here
std::cout << "error detected:" << e.what() << std::endl

}

return O;

exanpl e 8:undetected erroneous expression eval uation

Not using safe nunerics

error NOT detected!

4294967171 '= 2 - 127

Usi ng safe nunerics

error detected: subtraction result cannot be negative: negative overflow error
Program ended with exit code: O

2.4. Implicit Conversions Can Lead to Erroneous Results

At CPPCon 2016 Jon Kalb gave avery entertaining (and disturbing) lightning talk related to C++ expressions.

Thetak included a very, very simple example similar to the following:

/1 Copyright (c) 2018Robert Raney

I

/1 Distributed under the Boost Software License, Version 1.0. (See
/'l acconpanying file LICENSE 1 0.txt or copy at

/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreanr
#i ncl ude <boost/safe_nunerics/safe_integer. hpp>
int main(){

std::cout << "exanple 4: ";

std::cout << "inplicit conversions change data val ues" << std::endl
std::cout << "Not using safe numerics" << std::endl

10

https://www.youtube.com/watch?v=wvtFGa6XJDU

Safe Numerics

/1 problem inplicit conversions change data val ues
try{
signed int a{-1};
unsi gned int b{1};
std::cout << "a is
if(a < b){
std::cout << "a is less than b\n";

<< a<<"bis" <<b<<'\n";

}
el se{

std::cout << "b is less than a\n";
}

std::cout << "error NOT detected!" << std::endl;
}
catch(const std::exception &) {
/'l never arrive here - just produce the wong answer!
std::cout << "error detected!" << std::endl;
return 1;

}

/] solution: replace int with safe<int> and unsigned int w th safe<unsigned int>
std::cout << "Using safe nunerics" << std::endl;
tryf

usi ng nanespace boost::safe_nunerics;

saf e<signed int> a{-1};

saf e<unsi gned i nt> b{1};

std::cout << "a is " << a<<" bis" <<b<<"'\n';

if(a < b){

std::cout << "a is less than b\n";

}
el se{
std::cout << "b is less than a\n";
}
std::cout << "error NOT detected!" << std::endl;
return 1;

}

catch(const std::exception & e){
/1 never arrive here - just produce the correct answer!
std::cout << e.what() << std::endl;
std::cout << "error detected!" << std::endl;

}

return O;

exanple 3: inplicit conversions change data val ues
Not using safe nunerics

ais-1bis1

bis less than a

error NOT detected!

Usi ng safe nunerics

ais-1bis1

converted negative value to unsigned: donmmin error
error detected!

A normal person reads the above code and has to be dumbfounded by this. The code doesn't do what the text - according to the
rules of algebra - saysit does. But C++ doesn't follow the rules of algebra - it hasits own rules. There is generally no compile
time error. Y ou can get a compile time warning if you set some specific compile time switches. The explanation liesin reviewing
how C++ reconciles binary expressions (a < b isan expression here) where operands are different types. In processing this
expression, the compiler:

11

Safe Numerics

» Determines the "best" common type for the two operands. In this case, application of the rules in the C++ standard dictate that
thistypewill be an unsi gned i nt.

 Converts each operand to this common type. The signed value of -1 is converted to an unsigned value with the same bit-wise
contents, OxFFFFFFFF, on amachine with 32 bit integers. This corresponds to a decimal value of 4294967295.

» Performsthe calculation - in this caseit's <, the "less than" operation. Since 1 is less than 4294967295 the program prints "b is
lessthana'.

In order for a programmer to detect and understand this error he should be pretty familiar with the implicit conversion rules of
the C++ standard. These are available in a copy of the standard and also in the canonical reference book The C++ Programming
Language (both are over 1200 pages long!). Even experienced programmers won't spot this issue and know to take precautions to
avoid it. And thisis arelatively easy one to spot. In the more general case thiswill use integers which don't correspond to easily
recognizable numbers and/or will be buried as a part of some more complex expression.

This example generated a good amount of web traffic along with everyone's pet suggestions. See for example a blog post with
everyone's favorite "solution”. All the proposed "solutions' have disadvantages and attempts to agree on how handle this are
ultimately fruitlessin spite of, or maybe because of, the emotional content. Our solution is by far the simplest: just use the safe
numerics library as shown in the example above.

Note that in this particular case, usage of the safe types results in no runtime overhead in using the safe integer library. Code
generated will either equal or exceed the efficiency of using primitive integer types.

2.5. Mixing Data Types Can Create Subtle Errors

C++ contains signed and unsigned integer types. In spite of their names, they function differently which often produces
surprising results for some operands. Program errors from this behavior can be exceedingly difficult to find. This has lead to
recommendations of various ad hoc "rules’ to avoid these problems. It's not always easy to apply these "rules’ to existing code
without creating even more bugs. Here is atypical example of this problem:

#i ncl ude <i ostreane
#i ncl ude <cstdint>

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

usi ng nanespace std
usi ng nanespace boost::safe_nunerics

voi d f(const unsigned int & x, const int8 t & y){
cout << x * y << endl

voi d safe_f(
const safe<unsigned int> & x,
const safe<int8_t> &y

)
}

cout << x * y << endl

int main(){

cout << "exanple 4: ";
cout << "m xing types produces surprising results" << endl
try {

std::cout << "Not using safe nunmerics" << std::endl

/1 problem mxing types produces surprising results

f (100, 100); // works as expected

f (100, -100); // wong result - unnoticed

12

https://bulldozer00.com/2016/10/16/the-unsigned-conundrum/
https://bulldozer00.com/2016/10/16/the-unsigned-conundrum/
https://twitter.com/robertramey1/status/795742870045016065

Safe Numerics

cout << "error NOT detected!" << endl;;

}
catch(const std::exception & e){
/'l never arrive here

cout << "error detected:" << e.what() << endl;

}
try {
/1 solution: use safe types
std::cout << "Using safe nunerics" << std::endl
safe_f (100, 100); // works as expected
safe_f (100, -100); // throw error
cout << "error NOT detected!" << endl;;
}

catch(const std::exception & e){

cout << "error detected:" << e.what() << endl;

}

return O;

Hereisthe output of the above program:

exanpl e 4: m xing types produces surprising results
Not using safe nunerics

10000

4294957296

error NOT detected!

Usi ng safe numerics

10000

error detected! converted negative value to unsigned:

This solutionis simple, just replace instances of i nt with saf e<i nt >.

domai n error

2.6. Array Index Value Can Exceed Array Limits

Using anintrinsic C++ array, it's very easy to exceed array limits. This can fail to be detected when it occurs and create bugs
which are hard to find. There are several ways to address this, but one of the simplest would be to use safe_unsigned_range;

#i ncl ude <stdexcept>
#i ncl ude <i ostrean»
#i ncl ude <array>

#i ncl ude <boost/safe_nunerics/saf e_i nt eger_range. hpp>

voi d det ected_nsg(bool detected)

std::cout << (detected ? "error detected!" : "error NOT detected! ") << std::endl

}

int main(int, const char *[]){

/1 problem array index values can exceed array bounds

std::cout << "exanple 5

std::cout << "array index val ues can exceed array bounds" << std::endl;
std::cout << "Not using safe nunmerics" << std::endl

std::array<int, 37> i _array;

/1 unsigned int i_index = 43;
/1 the follow ng corrupts menory.

13

Safe Numerics

/1 This nmay or nay not be detected at run tine.
/1 i_array[i_index] = 84; // coment this out so it can be tested!
std::cout << "error NOT detected!" << std::endl

/1 solution: replace unsigned array index wth safe_unsi gned_range
std::cout << "Using safe nunerics" << std::endl
tryf

usi ng nanespace boost::safe_nunerics

using i _index_t = safe_unsigned_range<0, i_array.size() - 1>;

i _index_t i_index;

i_index = 36; // this works fine

i _array[i_index] = 84;

i _index = 43; // throw exception here

std::cout << "error NOT detected!" << std::endl; // so we never arrive here
}
catch(const std::exception & e){

std::cout << "error detected:" << e.what() << std::endl
}

return O;

exanple 5: array index values can exceed array bounds

Not using safe nunerics

error NOT detected!

Usi ng safe nunerics

error detected: Value out of range for this safe type: domain error

Collections like standard arrays and vectors do array index checking in some function calls and not in others so this may not
be the best example. However it does illustrate the usage of saf e_r ange<T> for assigning legal ranges to variables. This will
guarantee that under no circumstances will the variable contain a value outside of the specified range.

2.7. Checking of Input Values Can Be Easily Overlooked

It'sway too easy to overlook the checking of parameters received from outside the current program.

#i ncl ude <stdexcept>
#i ncl ude <sstreanr
#i ncl ude <i ostreanp

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>

int main(int, const char *[]){
/'l problem checking of externally produced val ue can be overl ooked
std::cout << "exanple 6
std::cout << "checking of externally produced val ue can be overl ooked" << std:: endl
std::cout << "Not using safe nunmerics" << std::endl

std::istringstreamis("12317289372189 1231287389217389217893");

tryf
int x, vy;
is > x > vy; /] get integer values fromthe user
std::cout << x << ' ' <<y << std::endl

std::cout << "error NOT detected!" << std::endl

}
catch(const std::exception &) {
std::cout << "error detected!" << std::endl

14

Safe Numerics

}

/1 solution: assign externally retrieved values to safe equival ents
std::cout << "Using safe nunerics" << std::endl

{
usi ng nanespace boost::safe_nunerics
safe<int> x, vy;
i s.seekg(0);
tryf
is > x >>vy; /| get integer values fromthe user
std::cout << x << ' ' <<y << std::endl
std::cout << "error NOT detected!" << std::endl
}
catch(const std::exception & e){
std::cout << "error detected:" << e.what() << std::endl
}
}
return O;

exanpl e 6: checking of externally produced val ue can be overl ooked
Not using safe nunerics

2147483647 0

error NOT detect ed!

Usi ng safe nunerics

error detected:error in file input: domain error

Without safe integer, one will have to insert new code every time an integer variable isretrieved. Thisis atedious and error prone
procedure. Here we have used program input. But in fact this problem can occur with any externally produced inpuit.

2.8. Cannot Recover From Arithmetic Errors

If adivide by zero error occursin a program, it's detected by hardware. The way this manifestsitself to the program can and will
depend upon

» datatype- int, float, etc
* setting of compile time command line switches
* invocation of some configuration functions which convert these hardware events into C++ exceptions

It's not all that clear how one would detect and recover from adivide by zero error in asimple portable way. Usually, usersjust
ignore the issue which usually results in immediate program termination when this situation occurs.

Thislibrary will detect divide by zero errors before the operation isinvoked. Any errors of this nature are handled according to
the exception_policy selected by the library user.

#i ncl ude <stdexcept>
#i ncl ude <i ostrean»

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

int main(int, const char *[]){
/1 problem cannot recover fromarithnmetic errors

std::cout << "exanmple 7: ";

15

Safe Numerics

std::cout << "cannot recover fromarithnetic errors" << std::endl;
std::cout << "Not using safe numerics" << std::endl;

try{
int x 1;
inty 0;
/] can't do this as it will crash the programw th no
/1 opportunity for recovery - coment out for exanple
/1 std::cout << x / vy;
std::cout << "error cannot be handled at runtine!" << std::endl;

}
catch(const std::exception &) {
std::cout << "error handled at runtinme!" << std::endl;
}
/1 solution: replace int with safe<int>
std::cout << "Using safe nunerics" << std::endl;
try{
usi ng nanespace boost::safe_nunerics;
const safe<int> x = 1;
const safe<int>y = 0;
std::cout << x / vy;
std::cout << "error NOT detected!" << std::endl;
}
catch(const std::exception & e){
std::cout << "error handled at runtine!" << e.what() << std::endl;

}

return O;

exanple 7: cannot recover fromarithmetic errors
Not using safe nunerics

error NOT detect abl e!

Usi ng safe nunerics

error detected: divide by zero: donain error

2.9. Compile Time Arithmetic is Not Always Correct

If adivide by zero error occurs while a program is being compiled, there is not guarantee that it will be detected. This example
shows areal example compiled with arecent version of CLang.

* Source code includes a constant expression containing a simple arithmetic error.

The compiler emits awarning but otherwise cal culates the wrong result.

» Replacing int with safe<int> will guarantee that the error is detected at runtime

» Operations using safe types are marked constexpr. So we can force the operations to occur at runtime by marking the results as

constexpr. Thiswill result in an error at compile time if the operations cannot be correctly calculated.

#i ncl ude <stdexcept>
#i ncl ude <i ostrean»

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

int main(int, const char *[]){
/1 problem cannot recover fromarithnetic errors

16

Safe Numerics

std::cout << "exanple 8: ";
std::cout << "cannot detect conpile time arithnmetic errors" << std::endl;
std::cout << "Not using safe numerics" << std::endl;

try{
const int x 1;

const int vy 0;

/1 will emt warning at conpile time

/[l will leave an invalid result at runtine.
std::cout << x / y; // will display "0"!
std::cout << "error NOT detected!" << std::endl;

}
catch(const std::exception &) {

std::cout << "error detected!" << std::endl;
}

/1 solution: replace int with safe<int>
std::cout << "Using safe nunerics" << std::endl;
tryf
usi ng nanespace boost::safe_nunerics;
const safe<int> x = 1;
const safe<int>y = 0;
/'l constexpr const safe<int>z = x / y; // note constexpr here!
std::cout << x / y; // error would be detected at runtine
std::cout << " error NOT detected!" << std::endl;
}
catch(const std::exception & e){
std::cout << "error detected:" << e.what() << std::endl;
}

return O;

exanpl e 8: cannot detect conpile time arithmetic errors
Not using safe nunerics

Oerror NOT detect ed!

Usi ng safe nunerics

error detected: positive overflow error

Program ended with exit code: O

2.10. Programming by Contract is Too Slow

Programming by Contract is a highly regarded technique. There has been much written about it and it has been proposed as an
addition to the C++ language [Garcig][Crowl & Ottosen] It (mostly) depends upon runtime checking of parameter and object
values upon entry to and exit from every function. This can slow the program down considerably which in turn undermines the
main motivation for using C++ in the first place! One popular scheme for addressing thisissue is to enable parameter checking
only during debugging and testing which defeats the guarantee of correctness which we are seeking here! Programming by
Contract will never be accepted by programmers aslong asit is associated with significant additional runtime cost.

The Safe Numerics Library has facilities which, in many cases, can check guaranteed parameter requirements with little or no
runtime overhead. Consider the following example:

#i ncl ude <cassert>
#i ncl ude <stdexcept>
#i ncl ude <sstreanp
#i ncl ude <i ostreanp

#i ncl ude <boost/safe_nunerics/saf e_i nt eger_range. hpp>

17

Safe Numerics

/1 NOT using safe nunmerics - enforce program contract explicitly
/1 return total nunmber of minutes
unsi gned int contract_convert (

const unsigned int & hours,

const unsigned int & nminutes

) {
/1 check that paraneters are within required limts
/1 invokes a runtine cost EVERYTIME the function is called
/1 and the overhead of supporting an interrupt.
/1 note high runtine cost!
i f(mnutes > 59)
throw std:: donmain_error("mnutes exceeded 59");
i f(hours > 23)
throw std::donmain_error("hours exceeded 23");
return hours * 60 + m nutes
}

/1 Use safe nunerics to enforce program contract automatically

/1 define conveni ent typenanes for hours and mi nutes hh: mm

usi ng hours_t = boost::safe_nunerics::safe_unsigned_range<0, 23>

using mnutes_t = boost::safe_numerics::safe_unsi gned_range<0, 59>;

using mnutes_total _t = boost::safe_nunerics::safe_unsi gned_range<0, 59>;

/] return total nunber of minutes

/'l type returned is safe_unsigned_range<0, 24*60 - 1>

aut o convert(const hours_t & hours, const mnutes_t & minutes) {
/1 no need to test pre-conditions
/1 input paraneters are guaranteed to hold |egitimte val ues
/1 no need to test post-conditions
/'l return val ue guaranteed to hold result
return hours * 60 + minutes

}

unsi gned int testl(unsigned int hours, unsigned int mnutes){
/'l problem checking of externally produced val ue can be expensive
/1 invalid paraneters - detected - but at a heavy cost
return contract_convert (hours, m nutes);

}

auto test2(unsigned int hours, unsigned int mnutes){
/1 solution: use safe nunerics
/'l safe types can be inplicitly constructed base types
/1 construction guarentees corectness
/1 return value is known to fit in unsigned int
return convert (hours, minutes);

}

auto test3(unsigned int hours, unsigned int mnutes){
/1 actually we don't even need the convert function any nore
return hours_t (hours) * 60 + minutes_t(m nutes);

}

int main(int, const char *[]){

std::cout << "exanmple 7: ";
std::cout << "enforce contracts with zero runtinme cost" << std::endl

unsi gned int total _minutes;

try {

18

Safe Numerics

total _minutes = test3(17, 83);

std::cout << "total minutes =" << total_mnutes << std::endl;
}
catch(const std::exception & e){

std::cout << "paranmeter error detected" << std::endl;

}
try {

total _minutes = test3(17, 10);

std::cout << "total minutes =" << total_mnutes << std::endl;
}

catch(const std::exception & e){
/1 shoul d never arrive here
std::cout << "paraneter error erroneously detected" << std::endl;

return 1;
}
return O;
}
exanpl e 8:

enforce contracts with zero runti ne cost
paranmeter error detected

In the example above, the function conver t incurs significant runtime cost every time the function is called. By using "safe"
types, this cost is moved to the moment when the parameters are constructed. Depending on how the program is constructed, this
may totally eliminate extraneous computations for parameter regquirement type checking. In this scenario, there is no reason to
suppress the checking for release mode and our program can be guaranteed to be always arithmetically correct.

3. Eliminating Runtime Penalty

Up until now, we've mostly focused on detecting when incorrect results are produced and handling these occurrences either by
throwing an exception or invoking some designated function. We've achieved our goal of detecting and handling arithmetically
incorrect behavior - but at cost of checking many arithmetic operations at runtime. It is afact that many C++ programmers will
find this trade-off unacceptable. So the question arises as to how we might minimize or eliminate this runtime penalty.

Thefirst step is to determine what parts of a program might invoke exceptions. The following program is similar to previous
examples but uses a special exception policy: | oose_t rap_pol i cy.

#i ncl ude <i ostreane

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>
#i ncl ude <boost/safe_nuneri cs/ exception_policies.hpp>// include exception policies

using safe_t = boost::safe_nunerics:: safe<
int,
boost: :safe_nunerics::native,
boost: :safe_nunerics::loose_trap_policy // note use of "loose_trap_exception" policy!
>;
int main(){
std::cout << "exanple 81:\n";
safe_t x(I NT_MAX);
safe_t y(2);
safet z =x +vy; // will fail to conmpile !
return O;

19

Safe Numerics

Now, any expression which might fail at runtime is flagged with a compile time error. Thereis no longer any need for t ry/
cat ch blocks. Since this program does not compile, the library absolutely guaranteesthat no arithmetic expression will yield
incorrect results. Furthermore, it is absolutely guar anteed that no exception will ever be thrown. Thisis our original goal.

Now all we need to do is make the program compile. There are a couple of waysto achieve this.

3.1. Using safe_range and safe_literal

When trying to avoid arithmetic errors of the above type, programmers will select data types which are wide enough to hold
values large enough to be certain that results won't overflow, but are not so large as to make the program needlessly inefficient.
In the example below, we presume we know that the values we want to work with fall in the range [-24,82]. So we "know" the
program will always result in a correct result. But since we trust no one, and since the program could change and the expressions
be replaced with other ones, we'll still usethel oose_t rap_pol i cy exception policy to verify at compile time that what we
"know" to betrueisin fact true.

#i ncl ude <i ostreanp

#i ncl ude <boost/safe_nunerics/safe_integer_range. hpp>

#i ncl ude <boost/safe_numerics/safe_integer_literal.hpp>

#i ncl ude <boost/safe_numeri cs/ excepti on. hpp>

#i ncl ude <boost/safe_nunerics/ native. hpp>

#i ncl ude "safe_format. hpp" // prints out range and val ue of any type

usi ng namespace boost::safe_nunerics;

/] create a type for holding snall integers in a specific range
using safe_t = safe_signed_range<
- 24,
82,
native, /| C++ type pronotion rules work OK for this exanple

| oose_trap_policy // catch problens at conpile tine
>,
/] create a type to hold one specific val ue
tenpl ate<int |>
using const_safe_t = safe_signed_literal<l, native, |oose_trap_policy>;

/1 W& "know' that C++ type pronotion rules will work such that
// addition will never overflow |f we change the programto break this,
/'l the usage of the |oose_trap_policy promotion policy will prevent conpilation.
int main(int, const char *[]){
std::cout << "exanple 83:\n";

constexpr const const_safe_t <10> x;

std::cout << "x =" << safe_format(x) << std::endl;

const expr const const_safe_t<67> vy;

std::cout << "y =" << safe_format(y) << std::endl;

const safe_t z = x +vy;

std::cout << "x +y =" << safe format(x + y) << std::endl;
std::cout << "z =" << safe_format(z) << std::endl;

return O;

e safe_si gned_r ange defines atype whichislimited to the indicated range. Out of range assignments will be detected at
compiletimeif possible (asin this case) or at run time if necessary.

20

Safe Numerics

A saferange could be defined with the same minimum and maximum value effectively restricting the type to holding one
specific value. Thisiswhat saf e_si gned_I i teral does.

» Defining constantswith saf e_si gned_I i t er al enablesthelibrary to correctly anticipate the correct range of the results of
arithmetic expressions at compile time.

» Theusageof | oose_trap_pol i cy will mean that any assignment to z which could be outside its legal range will resultin a
compile time error.

» All safeinteger operations are implemented as constant expressions. The usage of const expr will guarantee that z will be
available at compile time for any subsequent use.

e Soif this program compiles, it's guaranteed to return avalid result.

The output uses a custom output manipulator, saf e_f or mat , for safe types to display the underlying type and its range as well as
current value. This program produces the following run time output.

exanpl e 83:
X <si gned char>[10, 10] = 10
<si gned char>[67, 67] = 67

y = <int>[77,77] = 77
<si gned char>[-24,82] = 77

N X <
I+ 1

Take note of the various variable types:

* x andy are safe types with fixed ranges which encompass one single value. They can hold only that value which they have
been assigned at compile time.

e The sumx + y can also be determined at conpile tine.

» Thetypeof zisdefined so that It can hold only valuesin the closed range -24,82. We can assign the sum of x +y becauseitis
in the range that z is guaranteed to hold. If the sum could not be be guaranteed to fall in the range of z, we would get a compile
time error due to the fact we are using the | oose_t r ap_pol i cy exception policy.

All this information regarding the range and values of variables has been determined at compile time. There is no runtime
overhead. The usage of safe types does not alter the calculations or resultsin anyway. So saf e_t and const _saf e_t could be
redefinedtoi nt and const i nt respectively and the program would operate identically - although it might We could compile
the program for another machine - asis common when building embedded systems and know (assuming the target machine
architecture was the same as our native one) that no erroneous results would ever be produced.

3.2. Using Automatic Type Promotion

The C++ standard describes how binary operations on different integer types are handled. Hereisa simplified version of the
rules:

» promote any operand smaller thani nt toani nt or unsi gned int.

« if the size of the signed operand is larger than the size of the signed operand, the type of the result will be signed. Otherwise,
the type of the result will be unsigned.

» Convert the type each operand to the type of the result, expanding the size as necessary.
 Perform the operation the two resultant operands.

So the type of the result of some binary operation may be different than the types of either or both of the original operands.

21

Safe Numerics

If the values are large, the result can exceed the size that the resulting integer type can hold. Thisiswhat we call "overflow".
The C/C++ standard characterizes this as undefined behavior and leaves to compiler implementors the decision as to how such a
situation will be handled. Usually, this means just truncating the result to fit into the result type - which sometimes will make the
result arithmetically incorrect. However, depending on the compiler and compile time switch settings, such cases may result in
some sort of run time exception or silently producing some arbitrary resullt.

The complete signature for a safe integer typeis:

tenplate <

class T, /1 underlying integer type

class P = native, /1 type pronotion policy class

class E = default_exception_policy // error handling policy class
>
saf e;

The promotion rules for arithmetic operations are implemented in the default nat i ve type promotion policy are consistent with
those of standard C++

Up until now, we've focused on detecting when an arithmetic error occurs and invoking an exception or other kind of error
handler.

But now we look at another option. Using the aut omat i ¢ type promotion policy, we can change the rules of C++ arithmetic for
safe types to something like the following:

 for any C++ numeric type, we know from st d: : numeri c_| i mi t s what the maximum and minimum values that a variable
can be - this defines a closed interval.

 For any binary operation on these types, we can calculate the interval of the result at compile time.

» Fromthisinterval we can select a new type which can be guaranteed to hold the result and use this for the calculation. Thisis
more or |ess equivalent to the following code:

int x, vy;

int z=x+y /] could overflow
/'l so replace with the follow ng:

int x, vy;

long z = (long)x + (long)y; // can never overflow

One could do this by editing his code manually as above, but such atask would be tedious, error prone, non-portable and leave
the resulting code hard to read and verify. Using the aut omat i ¢ type promotion policy will achieve the equivalent result
without these problems.

When using the aut omat i ¢ type promotion policy, with agiven abinary operation, we silently promote the types of the operands
to awider result type so the result cannot overflow. Thisis afundamental departure from the C++ Standard behavior.

If theinterval of the result cannot be guaranteed to fit in the largest type that the machine can handle (usually 64 bits these days),
the largest available integer type with the correct result sign is used. So even with our "automatic" type promotion scheme, it's
still possible to overflow. So while our aut onat i ¢ type promotion policy might eliminate exceptionsin our example above, it
wouldn't be guaranteed to eliminate them for all programs.

Using thel oose_trap_pol i cy exception policy will produce a compile time error anytime it's possible for an error to occur.

This small example illustrates how to use automatic type promotion to eliminate al runtime penalty.

#i ncl ude <i ostreane

22

http://en.cppreference.com/w/cpp/types/numeric_limits

Safe Numerics

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>

#i ncl ude <boost/safe_nunerics/ excepti on_policies. hpp>

#i ncl ude <boost/safe_nunerics/automatic. hpp>

#i nclude "safe_format. hpp" // prints out range and val ue of any type

using safe_t = boost::safe_nunerics::safe<
int,
boost: :safe_nunerics::automatic, // note use of "automatic" policy!!!
boost::safe_numerics::loose_trap_policy

int main(int, const char *[]){
std::cout << "exanple 82:\n";
safe_t x(I NT_MAX) ;
safe t y = 2;
std::cout << "x
std::cout << "y
std::cout << "x
return O;

<< safe_format(x) << std::endl;
<< safe_format(y) << std::endl;

y =" << safe_format(x + y) << std::endl;

+ 1

» theaut omat i ¢ type promotion policy has rendered the result of the sum of two i nt eger s asasaf e<l ong> type.

* our program compiles without error - even when using thel oose_trap_pol i cy exception policy. Thisis because since a
| ong can always hold the result of the sum of two integers.

* Wedo not need to usethet ry/ cat ch idiom to handle arithmetic errors - we will have no exceptions.

» We only needed to change two lines of code to achieve our goal of guaranteed program correctness with no runtime penalty.

The above program produces the following output:

exanpl e 82:

X = <int>[-2147483648, 2147483647] = 2147483647

y = <int>[-2147483648,2147483647] = 2

X +y = <long>[-4294967296, 4294967294] = 2147483649

Note that if any timein the future we were to change safe<int> to safe<long long> the program could now overflow. But
sincewereusing | oose_t rap_pol i cy the modified program would fail to compile. At this point we'd have to alter our yet
program again to eliminate run time penalty or set aside our goal of zero run time overhead and change the exception policy to
defaul t _exception_policy.

Note that once we use automatic type promotion, our programming language isn't C/C++ anymore. So don't be tempted to so
something like the following:

// DON'T DO TH S !

#i f defi ned(NDEBUG)

using safe_t = boost::nuneric::safe<
int,
boost: :nuneric::automatic, // note use of "automatic" policy!!!
boost: : nuneric::|oose_trap_policy

>,

#el se
using safe_t = boost::nuneric:: safe<int>;

23

Safe Numerics

#endi f

3.3. Mixing Approaches

For purposes of exposition, we've divided the discussion of how to eliminate runtime penalties by the different approaches
available. A redlistic program could likely include al techniques mentioned above. Consider the following:

#i ncl ude <stdexcept>
#i ncl ude <i ostreanp
#i ncl ude <sstreanp

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

#i ncl ude <boost/safe_nunerics/safe_i nteger_range. hpp>
#i ncl ude <boost/safe_nunerics/ native. hpp>

#i ncl ude <boost/safe_nunerics/ exception. hpp>

#i nclude "safe_format. hpp" // prints out range and val ue of any type
usi ng nanespace boost::safe_nunerics

using safe_t = safe_signed_range<
-24,
82,
native,
| oose_trap_policy
>;

/1 define variables used for input
using input_safe_t = safe_signed_range<

- 24,

82,

native, // we don't need automatic in this case

| oose_exception_policy // assignment of out of range val ue should throw
>;

/1 function argunents can never be outside of limts
auto f(const safe_t & x, const safe_t & y){
auto z = x +y; [/ we know that this cannot fai

std::cout << "z =" << safe_format(z) << std::endl

std::cout << "(x +y) =" << safe_format(x + y) << std::endl
std::cout << "(x - y) =" << safe_format(x - y) << std::endl
return z;

}

bool test(const char * test_string)({

std::istringstream sin(test_string);

i nput _safe_t x, vy;

tryf
std::cout << "type in values in format x y:" << test_string << std:: endl
sin >> x >>vy; // read varibles, maybe throw exception

}

catch(const std::exception & e){
/1 none of the above should trap. Mark failure if they do
std::cout << e.what() << '\n' << "input failure" << std::endl
return fal se

}
std::cout << "x" << safe_format(x) << std::endl
std::cout << "y" << safe_format(y) << std::endl

24

Safe Numerics

std::cout << safe format(f(x, y)) << std::endl
std::cout << "input success" << std::endl
return true;

}
int main(){
std::cout << "exanple 84:\n"
bool result =
I test("123 125")
&% test ("0 0")
&& test("-24 82")
std::cout << (result ? "Success!" : "Failure") << std::endl
return result ? EXI T_SUCCESS : EX T_FAI LURE
}

» Asbefore, we define atype saf e_t to reflect our view of legal valuesfor this program. This usesthe aut omat i c type
promotion policy aswell asthel oose_t rap_pol i cy exception policy to enforce elimination of runtime penalties.

» Thefunctionf accepts only arguments of typesaf e_t so thereisno need to check the input values. This performs the
functionality of programming by contract with no runtime cost.

 Inaddition, we definei nput _saf e_t to be used when reading variables from the program console. Clearly, these can only
be checked at runtime so they use the throw_exception policy. When variables are read from the consol e they are checked
for legal values. We need no ad hoc code to do this, as these types are guaranteed to contain legal values and will throw an
exception when this guarantee is violated. In other words, we automatically get checking of input variables with no additional
programming.

* On calling of the function f , arguments of typei nput _saf e_t are converted to values of typesaf e_t . Inthis particular
example, it can be determined at compile time that construction of an instance of asaf e_t fromani nput _saf e_t can never
fail. Hence, not ry/ cat ch block is necessary. The usage of thel oose_t rap_pol i cy policy for saf e_t types guarantees
thisto be true at compile time.

Here is the output from the program when values 12 and 32 are input from the console:

exanpl e 84:

type in values in format x y:33 45

x<si gned char>[-24,82] = 33

y<si gned char>[-24, 82] = 45

z = <short>[-48,164] = 78

(x +y) = <short>[-48,164] = 78

(x - y) = <signed char>[-106,106] = -12
<short>[-48, 164] = 78

4. Case Studies

4.1. Composition with Other Libraries

For many years, Boost has included alibrary to represent and operate on rational numbers. Itswell crafted, has good
documentation and is well maintained. Using the rational library is as easy as construction an instance with the expression
rational r(n, d) wherenandd areintegers of the same type. From then on it can be used pretty much as any other number.
Reading the documentation with safe integers in mind one finds

Limited-precision integer types [such asi nt] may raise issues with the range sizes of their allowable negative
values and positive values. If the negative range is larger, then the extremely-negative numbers will not have
an additive inverse in the positive range, making them unusable as denominator values since they cannot be

25

http://www.boost.org/doc/libs/1_64_0/libs/rational/

Safe Numerics

normalized to positive values (unless the user islucky enough that the input components are not relatively
prime pre-normalization).

Which hints of trouble. Examination of the code reveals which suggest that care has been taken implement operations so asto
avoid overflows, catch divide by zero, etc. But the code itself doesn't seem to consistently implement thisidea. So we make a
small demo program:

#i ncl ude <i ostreane
#include <limts>

#i ncl ude <boost/rational . hpp>
#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

int main(int, const char *[]){

/1 sinple deno of rational library

const boost::rational<int>r {1, 2};
std::cout << "r =" << r << std::endl;

const boost::rational<int> q {-2, 4};
std::cout << "g = " << g << std::endl;

/1 display the product

std::cout << "r * g =" <<r * g << std::endl;

/'l problem rational doesn't handl e integer overflow well
const boost::rational<int> c {1, |INT_MAX};

std::cout << "¢ = " << ¢ << std::endl;

const boost::rational<int>d {1, 2};

std::cout << "d =" << d << std::endl;

/1 display the product - wong answer

std::cout << "¢c * d =" <<c * d << std::endl;

/] solution: use safe integer in rational definition
using safe_rational = boost::rational <
boost: : saf e_numeri cs: : saf e<i nt >
>,
/] use rationals created with safe_t
const safe_rational sc {1, std::nuneric_limts<int>: :max()};

std::cout << "¢ = " << sc << std::endl;
const safe_rational sd {1, 2};
std::cout << "d = " << sd << std::endl;
std::cout << "¢c * d =";

try {

/1 multiply them This will overflow
std::cout << sc * sd << std::endl;
}
catch (std::exception const& e) {
/1 catch exception due to nultiplication overflow
std::cout << e.what() << std::endl;

}

return O;

which produces the following output

1/ 2
-1/2

26

Safe Numerics

*

q=-1/4

1/ 2147483647

1/2

d=1/-2

1/ 2147483647

1/2

d = nmultiplication overflow positive overflow error

OO0 0aQ0 =
01

00

Therationa library documentation is quite specific as to the type requirements placed on the underlying type. Turns out the our
own definition of an integer type fulfills (actually surpasses) these requirements. So we have reason to hope that we can use
saf e<i nt > asthe underlying type to create what we might call a"saf e_r at i onal ". This we have done in the above example
where we demonstrate how to compose the rational library with the safe numerics library in order to create what amounts

to asafe _rational library - all without writing aline of code! Still, things are not perfect. Since the rational numbers library
implements its own checking for divide by zero by throwing an exception, the safe numerics code for handling this - included
exception policy will not be respected. To summarize:

* In some cases safe types can be used as template parameters to other types to inject the concept of "no erroneous results” into
the target type.

 Such composition is not guaranteed to work. The target type must be reviewed in some detail.

4.2. Safety Critical Embedded Controller

Suppose we are given the task of creating stepper motor driver software to drive arobotic hand to be used in robotic micro
surgery. The processor that has been selected by the engineersis the PIC18F2520 manufactured by Microchip Corporation. This
processor has 32KB of program memory. On a processor this small, it's common to use a mixture of 8, 16, and 32 bit datatypesin
order to minimize memory footprint and program run time. Thetypei nt has 16 bits. It's programmed in C. Since this program is
going to be running life critical function, it must be demonstrably correct. Thisimplies that it needs to be verifiable and testable.
Since the target micro processor isinconvenient for accomplishing these goals, we will build and test the code on the desktop.

How a Stepper Motor Works

Figure1.1. Stepper Motor

A stepper motor controller emits a pulse which causes the motor to move one step. It seems simple, but in practice it turns out
to be quite intricate to get right as one has to time the pulsesindividually to smoothly accelerate the rotation of the motor from a

27

http://www.boost.org/doc/libs/1_64_0/libs/rational/
http://www.boost.org/doc/libs/1_64_0/libs/rational/rational.html#Integer%20Type%20Requirements
http://www.boost.org/doc/libs/1_64_0/libs/rational/
http://www.microchip.com/wwwproducts/en/PIC18F2520
http://www.microchip.com

Safe Numerics

standing start until it reaches the some maximum velocity. Failure to do thiswill either limit the stepper motor to very low speed
or result in skipped steps when the motor is under load. Similarly, aloaded motor must be slowly decelerated down to a stop.

Figure 1.2. Motion Profile

T I_ - w
~ = o j
= B .
slope = ar o]] slope = o5
—. .J
(] LS
1"’.-‘:‘; I_' ‘—.
L I-.'.:'\. 1 | = -
| frea
Aurea = [
L1 e o
Araa =i
] . r [[] r
A\ ol '|.\.. [} 11 l:. _I l.. =1 e |..lI I-I'
palse paulss Pl Pl no pul e

| -

Thisimplies the the width of the pulses must decrease as the motor accelerates. That is the pulse with has to be computed while
the motor isin motion. Thisisillustrated in the above drawing. A program to accomplish this might look something like the
following:

setup registers and step to zero position

specify target position
set initial time to interrupt
enable interrupts

On interrupt
if at target position
disable interrupts and return
calculate width of next step
change current winding according to motor direction
set delay time to next interrupt to width of next step

Already, thisisturning it to a much more complex project than it first seemed. Searching around the net, we find a popular article
on the operation of stepper motors using simple micro controllers. The algorithm is very well explained and it includes complete
code we can test. The engineers are still debugging the prototype boards and hope to have them ready before the product actually
ships. But this doesn't have to keep us from working on our code.

Updating the Code

Inspecting this code, we find that it iswritten in adialect of C rather than C itself. At the time this code was written, conforming
versions of the C compiler were not available for PIC processors. We want to compile this code on the Microchip XC8 compiler
which, for the most part, is standards conforming. So we made the following minimal changes:

28

../../example/motor.c
../../example/motor.c
http://ww1.microchip.com/downloads/en/DeviceDoc/50002053G.pdf

Safe Numerics

* Factor into motorl.c which contains the motor driving code and motor_test1.c which tests that code.
* Include header <xc. h> which contains constants for the PIC18F2520 processor

* Include header <st di nt . h> to include standard Fixed width integer types.

* Include header <st dbool . h> to include keywords true and false in a C program.

» Theorigina has some anomaliesin the names of types. For example, intl6 is assumed to be unsigned. Thisis an artifact of
the original C compiler being used. So type names in the code were altered to standard ones while retaining the intent of the
origina code.

e Addinmissing neke16 function.
» Format code to personal taste.
» Replaced enable _interrupts and disable_interrupts functions with appropriate PIC commands.

The resulting program can be checked to be identical to the original but compiles on with the Microchip XC8 compiler. Given
a development board, we could hook it up to a stepper motor, download and boot the code and verify that the motor rotates 5
revolutions in each direction with smooth accel eration and deceleration. We don't have such a board yet, but the engineers have
promised aworking board real soon now.

Refactor for Testing

In order to develop our test suite and execute the same code on the desktop and the target system we factor out the shared code as
a separate module which will used in both environments without change. The shared module not or 2. ¢ contains the algorithm
for handling the interrupts in such away asto create the smooth acceleration we require.

notor_test2.c exanpl e92. cpp

#include ... #include ...
PIC typedefs... desktop types...
\ /
\ /
#includenot or 2. ¢
/ \
/ \
PIC test code desktop test code

Compiling on the Desktop

Using the target environment to run tests is often very difficult or impossible due to limited resources. So software unit testing for
embedded systemsis very problematic and often skipped. The C language on our desktop is the same used by the PIC18F2520.
So now we can also run and debug the code on our desktop machine. Once our code passes all our tests, we can download the
code to the embedded hardware and run the code natively. Here is a program we use on the desktop to do that:

TELLLLLELEL i rrrrririrrrrrrrd
/'l exanpl e92. cpp

I

/1 Copyright (c) 2015 Robert Raney

I

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at

/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreane

29

../../example/motor1.c
../../example/motor_test1.c
http://www.microchip.com/wwwproducts/en/PIC18F2520
../../example/motor1.c
../../example/motor2.c
../../example/motor_test2.c
../../example/motor2.c
../../example/example92.cpp
../../example/motor2.c
../../example/motor2.c
../../example/motor2.c
http://www.microchip.com/wwwproducts/en/PIC18F2520

Safe Numerics

// EREE R R R R EEEEEEEEEEEEEEEEEEES]

/1 1. include headers to support safe integers
#i ncl ude <boost/safe_nunerics/cpp. hpp>

#i ncl ude <boost/safe_nunerics/ exception. hpp>

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

// khkkhkkhkkhkkkhkkhkkhkkdkhkhkkhkkdkhkhkdkkkhxkx

/1l 2. specify a pronotion policy to support proper enul ation of
/1 PIC types on the desktop

using pi cl6_pronoti on = boost::safe_nunerics::cpp<

8, [/ char 8 hits
16, // short 16 bits
16, // int 16 bits
16, // long 16 bits

32 // long long 32 bits
>,
/1 1st step=50ns; nmax speed=120rpm (based on 1MHz tiner, 1.8deg steps)
#define CO (50000 << 8)
#define CMN (2500 << 8)

static_assert(CO < Oxffffff, "Largest step too |ong");
static_assert(C_MN > 0, "Snallest step nmust be greater than zero");
static_assert(C_MN < CO, "Snallest step nust be snmaller than | argest step");

// EREE R R R R R EREEEEEEEEEEEEEEEES]

/1 3. define PIC integer type nanes to be safe integer types of he sane size

tenplate <typename T> // T is char, int, etc data type
using safe_t = boost::safe_nunerics::safe<
T
pi c16_pronotion
>,
/1 alias original programis integer types to corresponding Pl C safe types
/1 In conjunction with the pronotion policy above, this will permt us to
/1 guarantee that the resulting programwi |l be free of arithnetic errors
/1 introduced by C expression syntax and type pronotion with no runtine penalty

typedef safe_t<int8 t> int8
typedef safe_t<intl6_t> intl6;
typedef safe_t<int32_t> int32
typedef safe_t<uint8 t> uint8
typedef safe_t<uintl1l6_t> uintl6
typedef safe_t<uint32_t> uint32

// EEE R R R R EEEEEEEEEEEEEEEREEES]

/1 4. enulate PIC features on the desktop

/1 filter out special keyword used only by XC8 conpil er
#define __interrupt

/1 filter out XC8 enabl e/di sabl e gl obal interrupts
#define ei ()

#define di ()

/1 emulate PIC special registers
ui nt 8 RCON;

ui nt 8 | NTCON

ui nt 8 CCP1I E;

ui nt 8 CCP2I E;

30

Safe Numerics

ui nt 8 PORTC,
ui nt 8 TRI SC;
ui nt 8 T3CON,
ui nt 8 T1CON,

ui nt 8 CCPR2H,;
ui nt 8 CCPR2L;
ui nt 8 CCPRI1H,
ui nt 8 CCPRIL;
ui nt 8 CCP1CON;
ui nt 8 CCP2CON;
ui nt 8 TMR1H;

ui nt 8 TMRILL;

/'l create type used to map PIC bit names to
/] correct bit in PIC register
tenpl ate<typenane T, std::int8_t N>
struct bit {
T & m word;
constexpr explicit bit(T & rhs)
m wor d(r hs)

{}
constexpr bit & operator=(int b){
if(b!=0)
mword |= (1 << N);
el se
mword & ~(1 << N);
return *this;
}

constexpr operator int () const {
return mword >> N & 1;
}
b

/1 define bits for T1CON register
struct {
bit<uint8, 7> RD16{T1CON};
bi t<uint8, 5> T1CKPS1{T1CON};
bi t <uint8, 4> T1CKPSO{T1CON};
bi t <ui nt8, 3> T1OSCEN{ T1CON};
bi t <uint8, 2> T1SYNC{ T1CON\};
bi t<uint8, 1> TMRLCS{T1CON};
bi t <uint8, 0> TMRLON{ TLCON};
} T1CONbi ts;

/1 define bits for T1CON register

struct {
bit<uint8, 7> GEI{| NTCON};
bi t <ui nt 8, 5> PEI E{| NTCON\} ;
bi t <uint8, 4> TMROI E{| NTCON};
bi t <ui nt 8, 3> RBI E{| NTCON\} ;
bi t <uint8, 2> TMROI F{ | NTCON};
bi t<uint8, 1> | NTOI F{| NTCON};
bi t <ui nt 8, 0> RBI F{| NTCON\} ;

} I NTCONbi t s;

// EREE R R R EEEEEEEEEEEEEEEEEEES]

/1 5. include the environnent independent code we want to test

#i ncl ude "notor2.c"

31

Safe Numerics

#i ncl ude <chr ono>
#i ncl ude <t hread>

/1 round 24.8 format to m croseconds
int32 to_m croseconds(uint32 t){
return (t + 128) / 256
}
using result_t = uint8_t;
const result_t success = 1;
const result_t fail =0
/1 move notor to the indicated target position in steps

result _t test(int32 m({

i nt

try {
std::cout << "nopve notor to

nmot or _run(n);
std: : cout

<< "step #" <<
<< "del ay(us)(24.8)" << ' '
<< "delay(us)" <<

<< m<< '\n';

<< "CCPR' << ' '
<< "motor position" << '\n';
do{

std::this_thread::sleep_for(std::chrono::ncroseconds(to_m croseconds(c)));
uint32 last_c = c;
uint32 | ast_ccpr = ccpr
i sr_nmotor_step();
std: : cout
<< step_no <<
<< last_c <<
<< to_m croseconds(last_c) <<
<< std::hex << last_ccpr << std::dec <<
<< notor_pos << '\n';

}while(run_flg);

}

catch(const std::exception & e){
std::cout << e.what() << '\n';
return fail

}

return success;

mai n() {
std::cout << "start test\n";
result_t result = success
tryf
initialize();
/1 move notor to position 1000
result &= test(1000);
/1 move nobtor to position 200
result &= test(200);
/1 nmove notor to position 200 again! Should result in no novenent.
result &= test(200);
/1 move back to position O
result &= test(0);
// khkkhkkhkkhkkkhkkhkhkkdkhkhkkhkkhkhkhkhkkkhxk*x
/1l 6. error detected here! data types can't handl e enough
/] steps to nove the carriage fromend to end! Suppress this
/] test for now.

32

Safe Numerics

/1 move notor to position 50000.
/1 result &= test(50000);

/1 move notor back to position O.
result &= test(0);

}

catch(const std::exception & e){
std::cout << e.what() << '\n';
return 1;

}
catch(...){
std::cout << "test interrupted\n”;
return EXI T_FAI LURE;
}
std::cout << "end test\n";
return result == success ? EXI T_SUCCESS : EXI T_FAl LURE;

Here are the essential features of the desktop version of the test program.

1
2.

Include headers required to support safe integers.
Specify apromotion policy to support proper emulation of PIC types on the desktop.

The C language standard doesn't specify sizes for primitive datatypeslikei nt . They can and do differ between environments.
Hence, the characterization of C/C++ as "portable” languages is not strictly true. Here we choose aliases for data types so

that they can be defined to be the same in both environments. But thisis not enough to emulate the PIC18F2520 on the
desktop. The problem is that compilersimplicitly convert arguments of C expressions to some common type before performing
arithmetic operations. Often, this common typeisthe nativei nt and the size of this native typeis different in the desktop and
embedded environment. Thus, many arithmetic results would be different in the two environments.

But now we can specify our own implicit promotion rules for test programs on the development platform that are identical to
those on the target environment! So unit testing executed in the devel opment environment can now provide results relevant to
the target environment.

. Define PIC integer type aliases to be safe integer types of he same size.

Code tested in the devel opment environment will use safe numerics to detect errors. We need these aliases to permit the code
in motor2.c to be tested in the desktop environment. The same code run in the target system without change.

. Emulate PIC features on the desktop.

The PIC processor, in common with most micro controllers these days, includes a myriad of specia purpose peripheralsto
handle things like interrupts, USB, timers, SPI bus, 1"2C bus, etc.. These peripherals are configured using specia 8 bit words
in reserved memory locations. Configuration consists of setting particular bits in these words. To facilitate configuration
operations, the XC8 compiler includes a special syntax for setting and accessing bits in these locations. One of our goalsisto
permit the testing of the identical code with our desktop C++ compiler as will run on the micro controller. To realize this goa,
we create some C++ code which implements the XC8 C syntax for setting bits in particular memory locations.

. include motorl.c

. Add test to verify that the motor will be able to keep track of a position from 0 to 50000 steps. This will be needed to maintain

the position of out linear stage across a range from 0 to 500 mm.

Our first attempt to run this program fails by throwing an exception from motorl.c indicating that the code attempts to left shift a

negative number at the statements:

denom = ((step_no - nove) << 2) + 1;

33

http://www.microchip.com/wwwproducts/en/PIC18F2520
../../example/motor2.c
../../example/motor1.c
../../example/motor1.c

Safe Numerics

According to the C/C++ standards this is implementation defined behavior. But in practice with all modern platforms (as far
as | know), thiswill be equivalent to a multiplication by 4. Clearly the intent of the original author isto "micro optimize" the
operation by substituting a cheap left shift for a potentialy expensive integer multiplication. But on all modern compilers, this
substitution will be performed automatically by the compiler's optimizer. So we have two alternatives here:

» Justignoretheissue.

Thiswill work when the codeisrun on the PIC. But, in order to permit testing on the desktop, we need to inhibit the error
detection in that environment. With safe numerics, error handling is determined by specifying an exception policy. In this
example, we've used the default exception policy which traps implementation defined behavior. To ignore this kind of behavior
we could define our own custom exception policy.

» changethe<< 2to* 4. Thiswill produce the intended result in an unambiguous, portable way. For al known compilers, this
change should not affect runtime performance in any way. It will result in unambiguously portable code.

« Alter the code so that the expression in question is never negative. Depending on sizes of the operands and the size of the
native integer, this expression might return convert the operandsto int or result in an invalid result.

Of these alternatives, the third seems the more definitive fix so we'll choose that one. We also decide to make a couple of minor
changes to simplify the code and make mapping of the algorithm in the article to the code more transparent. With these changes,
our test program runs to the end with no errors or exceptions. In addition, | made aminor change which simplifies the handling of
floating point valuesin format of 24.8. This results in motor2.c which makes the above changes. It should be easy to see that these
two versions are otherwise identical.

Finally our range test fails. In order to handle the full range we need, we'll have to change some data types used for holding step
count and position. We won't do that here as it would make our example too complex. We'll deal with this on the next version.

Trapping Errors at Compile Time

We can test the same code we're going to load into our target system on the desktop. We could build and execute a complete unit
test suite. We could capture the output and graph it. We have the ability to make are code much more likely to be bug free. But:

 This system detects errors and exceptions on the test machine - but it fails to address and detect such problems on the target
system. Since the target system is compiles only C code, we can't use the exception/error facilities of thislibrary at runtime.

» Testing shows the presence, not the absence of bugs. Can we not prove that all integer arithmetic is correct?

* For at least some operations on safe integers there is runtime cost in checking for errors. In this example, thisis not realy a
problem as the safe integer code is not included when the code is run on the target - it's only a C compiler after all. But more
generally, using safe integers might incur an undesired runtime cost.

Can we catch all potential problems at compiler time and therefore eliminate all runtime cost?

Our first attempt consists of simply changing default exception policy from the default runtime checking to the compile time
trapping one. Then we redefine the aliases for the types used by the PIC to use this exception policy.

/'l generate conpile tine errors if operation could fail
using trap_policy = boost::nuneric::|oose_trap_policy;

typedef safe_ t<int8_ t, trap_policy> int8;

When we compile now, any expressions which could possibly fail will be flagged as syntax errors. This occurs 11 times when
compiling the motor2.c program. This is fewer than one might expect. To understand why, consider the following example:

safe<std::int8_t> x, y;

34

../../example/motor2.c
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra
../../example/motor2.c

Safe Numerics

safe<std::intl6_t> z = x + vy;

C promotion rules and arithmetic are such that the z will always contain an arithmetically correct result regardless of what values
are assigned to x and y. Hence there is no need for any kind of checking of the arithmetic or result. The Safe Numerics library
uses compile time range arithmetic, C++ template multiprogramming and other techniques to restrict invocation of checking code
to only those operations which could possible fail. So the above code incurs no runtime overhead.

Now we have 11 cases to consider. Our goal isto modify the program so that this number of casesis reduced - hopefully to zero.
Initially | wanted to just make a few tweaks in the versions of exanpl €92. c, not or 2. ¢ and ot or _t est 2. ¢ above without
actually having to understand the code. It turns out that one needs to carefully consider what various types and variables are
used for. This can be agood thing or a bad thing depending on one's circumstances, goals and personality. The programs above
evolved into exanpl €93. ¢, not or 3. ¢ and not or _t est 3. c. First well look at exanpl e93. ¢

TLLLLLLEL i rrrrrrirrrrrrrrrd
/'l exanpl e93. cpp

I

/1 Copyright (c) 2015 Robert Raney

I

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at

/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreanr

/1 include headers to support safe integers

#i ncl ude <boost/safe_nunerics/cpp. hpp>

#i ncl ude <boost/safe_nunerics/ exception. hpp>

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

#i ncl ude <boost/safe_nunerics/safe_i nteger_range. hpp>
#i ncl ude <boost/safe_nunerics/safe_integer_literal.hpp>

/1 use sanme type pronotion as used by the pic conpiler
/] target conpiler XC8 supports
using pi cl6_pronoti on = boost::safe_nunerics::cpp<

8, [/ char 8 hits
16, // short 16 bits
16, // int 16 bits
16, // long 16 bits

32 // long long 32 bits
.

// EREE R R R R EREEEEEEEEEEEEEEEES]

/1 1. Specify exception policies so we will generate a
/] conpile time error whenever an operation M GHT fail

// EREE R R R R EEEEEEEEEEEEEEEEEEES]

/'l generate runtine errors if operation could fai
usi ng exception_policy = boost::safe_nunerics::default_exception_policy;

/'l generate conpile tine errors if operation could fail
using trap_policy = boost::safe_nunerics::|loose_trap_policy;

// EEE R R R R EEEEEEEEEEEEEEEEEREES]

/1l 2. Create a macro naned literal an integral value
/1 that can be evaluated at conpile tine.
#define literal (n) make_safe_ literal (n, picl6_pronotion, void)

/1 For min speed of 2 nm/ sec (24.8 format)

35

../../example/example93.c
../../example/motor3.c
../../example/motor_test3.c

Safe Numerics

/!l sec /| step =sec/ 2 mm* 2 nm/ rotation * rotation / 200 steps
#tdefi ne Q0 l'iteral (5000 << 8)

/1 For max speed of 400 mm/ sec
/'l sec | step =sec / 400 nm* 2 nm/ rotation * rotation / 200 steps
#define CMN literal (25 << 8)

static_assert(
C0 < nmeke_safe_literal (Oxffffff, picl6_pronotion,trap_policy),
"Largest step too |ong"

)

static_assert(
C MN > nmake_safe_literal (0, picl6_pronotion,trap_policy),
"Smal | est step nust be greater than zero"

)
// EREE R R R R R EREEEEEEEEEEEEREEES]

/1 3. Create special ranged types for the notor program
/1 These wiil guarantee that values are in the expected
/1 ranges and permit conpile tinme determination of when
/'l exceptional conditions mght occur

using pic_register_t = boost::safe_nunmerics::safe<
uint8_t,
pi c16_pronoti on,
trap_policy // use for conpiling and running tests

/1 note: the maxi mum val ue of step_t would be
/1 50000 = 500 mm/ 2 mmrotation * 200 steps/rotation.
/1 But in one expression the value of nunmber of steps * 4 is
/] used. To prevent introduction of error, pernmit this
/1 type to hold the |arger val ue
using step_t = boost::safe_nunerics::safe_unsi gned_range<
0,
200000,
pi c16_pronoti on,
exception_policy

/1 position
using position_t = boost::safe_nunerics::safe_unsigned_range<
0,
50000, // 500 mm/ 2 mmirotation * 200 steps/rotation
pi c16_pronoti on,
exception_policy

/1l next end of step tiner value in format 24.8
/'l where the .8 is the nunber of bits in the fractional part.
using ccpr_t = boost::safe_nunerics:: safe<

ui nt 32_t,

pi c16_pronoti on,

exception_policy

/1 pulse length in format 24.8

/1 note: this value is constrainted to be a positive val ue. But
/1 we still need to nake it a signed type. W get an arithnetic
/1 error when nmoving to a negative step nunber.

36

Safe Numerics

using c_t = boost::safe_nunerics::safe_unsigned_range<
C_MN,
0,
pi c16_pronoti on,
exception_policy
>3
/1 32 bit unsigned integer used for tenporary purposes
using tenp_t = boost::safe_nunerics::safe_unsigned_range<
0, Oxffffffff,
pi c16_pronoti on,
exception_policy

/1 index into phase table

/'l note: The |legal values are 0-3. So why nust this be a signed
/1 type? Turns out that expressions |ike phase_ix + d

/1l will convert both operands to unsigned. This in turn wll

/] create an exception. So |leave it signed even though the

/1 value is greater than zero

usi ng phase_i x_t = boost::safe_nunerics::safe_signed_range<

0

3

pi c16_pronoti on,
trap_policy

/1 settings for control val ue out put

usi ng phase_t = boost::safe_nunerics::safe<
uint16_t,
pi c16_pronoti on,
trap_policy

/1 direction of rotation
using direction_t = boost::safe_nunerics::safe_signed_range<
-1,
+1,
pi c16_pronoti on,
trap_policy

/'l some nunber of microseconds

using m croseconds = boost::safe_nunerics:: safe<
ui nt32_t,
pi c16_pronoti on,
trap_policy

>

// EREE R R R R EEEEEEEEEEEEEEEEEEES]

/1 emulate PIC features on the desktop

/1 filter out special keyword used only by XC8 conpil er
#define __interrupt

/1 filter out XC8 enabl e/di sable gl obal interrupts
#define ei ()

#define di ()

/1 emul ate PIC special registers
pi c_register_t RCON

37

Safe Numerics

pic_register_t | NTCON,
pi c_register_t CCPllE;
pi c_register_t CCP2lE;
pi c_register_t PORTC,
pic_register_t TRISC
pic_register_t T3CON,
pic_register_t T1CON;

pi c_register_t CCPR2H;
pi c_register_t CCPR2L;
pic_register_t CCPR1H,
pic_register_t CCPRILL;
pi c_register_t CCP1CON,
pi c_register_t CCP2CON,
pic_register_t TMRLH;
pic_register_t TMIL;

// EREEE R R R EEEEEEEEEEEEEEEEEEES]

/'l special checked type for bits - values restricted to 0 or 1
using safe_bit_t = boost::safe_nunerics::safe_unsigned_range<

0,

1,

pi c16_pronoti on,
trap_policy

>3
/1 create type used to map PIC bit names to
/] correct bit in PIC register
tenpl ate<typenane T, std::int8_t N>
struct bit {
T & m word;
constexpr explicit bit(T & rhs)
m wor d(r hs)
{}
/'l special functions for assignnment of literal
constexpr bit & operator=(decltype(literal (1))){
mword |=literal (1 << N);
return *this;

}

constexpr bit & operator=(decltype(literal (0))){
mword & ~literal (1 << N);
return *this;

}

/1 operator to convert to O or 1
constexpr operator safe_bit_t () const {
return mword >> literal (N & literal (1);

}

b

/1 define bits for T1CON register

struct {
bit<pic_register_t, 7> RD16{T1CON\};
bit<pic_register_t, 5> T1CKPS1{ T1CON};
bit<pic_register_t, 4> T1CKPS0{ T1CON};
bit<pic_register_t, 3> T1OSCEN{ T1CON};
bi t<pic_register_t, 2> TISYNC{T1CO\};
bit<pic_register_t, 1> TMRICS{T1CON\};
bit<pic_register_t, 0> TMRION{ TLCON};

} T1CONbi ts;

38

Safe Numerics

/1 define bits for T1CON register

struct {
bit<pic_register_t, 7> GEl{I NTCO\};
bi t <pic_register_t, 5> PElIE{I NTCO\};
bi t<pic_register_t, 4> TMROI E{| NTCON};
bi t<pic_register_t, 3> RBIE{I NTCO\};
bi t<pic_register_t, 2> TMROI F{|1 NTCON};
bi t<pic_register_t, 1> | NTOI F{| NTCON};
bi t <pic_register_t, 0> RBIF{I NTCO\};

} I NTCONbi t s;

#i ncl ude "notor3.c"

#i ncl ude <chr ono>
#i ncl ude <t hread>

/1 round 24.8 format to m croseconds

m croseconds to_mi croseconds(ccpr_t t){
return (t + literal (128)) / literal (256);

}

using result_t = uint8_t;
const result_t success = 1;
const result_t fail =0

/1 move notor to the indicated target position in steps
result_t test(position_t new_position){
try {

std::cout << "nove notor to " << new_position << '\n';

not or _run(new_posi tion);

std: : cout

<< "step #" << '

<< "del ay(us)(24.8)" << ' '

<< "delay(us)" <<

<< "CCPR' << ' '

<< "motor position" << '\n';

whi | e(busy()){
std::this_thread::sleep_for(std::chrono::ncroseconds(to_m croseconds(c)));
c_t last_c = c;
ccpr_t last_ccpr = ccpr
i sr_nmotor_step();
std::cout << i <<
<< last_c << " '
<< to_m croseconds(last_c) <<'
<< std::hex << |ast_ccpr << std::dec << ' '
<< notor_position << '\n';

b

}

catch(const std::exception & e){
std::cout << e.what() << '\n';
return fail

}

return success;

int main(){
std::cout << "start test\n";
result_t result = success

try {
initialize();

Safe Numerics

/1 move notor to position 1000

result &= test(literal (9000));

/1 nmove to the |eft before zero position
/] fails to conpile !

/1 result & ! test(-10);

/1 move nobtor to position 200

result &= test(literal (200));

/1 nmove notor to position 200 again! Should result in no novenent.
result &= test(literal (200));

/1 nmove notor to position 50000.

result &= test(literal (50000));

/1 move notor back to position O.

result & test(literal (0));

}

catch(...){
std::cout << "test interrupted\n”;
return EXI T_FAI LURE;

}

std::cout << "end test\n";
return result == success ? EXI T_SUCCESS : EXI T_FAl LURE;

Here are the changes we've made int the desktop test program

1. Specify exception policies so we can generate a compile time error whenever an operation MIGHT fail. We've aliased this
policy with the namet r ap_pol i cy. The default policy of which throws a runtime exception when an error is countered is
aliased asexcept i on_pol i cy. When creating safe types, we'll now specify which type of checking, compile time or runtime,
we want done.

2. Create amacro named "literal" an integral value that can be evaluated at compile time.

"literal" values are instances of safe numeric types which are determined at compiletime. They are const expr values. When
used along with other instances of safe numeric types, the compiler can calculate the range of the result and verify whether or
not it can be contained in the result type. To create "literal" types we use the macro meke_safe_literal (n, p, e) wheren
isthe value, p isthe promotion policy and eisthe exception policy.

When al the valuesin an expression are safe numeric values, the compiler can calculate the narrowest range of the result.
If al the values in this range can be represented by the result type, then it can be guaranteed that an invalid result cannot be
produced at runtime and no runtime checking is required.

Make sure that al literal values are x are replaced with the macro invocation "literal (x)".

It's unfortunate that the "literal" macro is required as it clutters the code. The good news isthat is some future version of C++,
expansion of const expr facilities may result in elimination of this requirement.

3. Create special types for the motor program. These will guarantee that values are in the expected ranges and permit compile
time determination of when exceptional conditions might occur. In this example we create a specia type c_t to the width of
the pulse applied to the motor. Engineering constraints (motor load inertia) limit this value to the range of COto C_MIN. So
we create atype with those limits. By using limits no larger than necessary, we supply enough information for the compiler to
determine that the result of a calculation cannot fall outside the range of the result type. So less runtime checking is required.
In addition, we get extra verification at compile time that values are in reasonabl e ranges for the quantity being model ed.

We call these types "strong types".

And we've made changes consistent with the above to motor3.c as well

/*

40

../../example/motor3.c

Safe Numerics

davi d austin
http://ww. enbedded. coni desi gn/ ntus- pr ocessor s- and- socs/ 4006438/ Gener at e- st epper - not or - speed- profi |
DECEMBER 30, 2004

Denp program for stepper notor control with |inear ranps
Har dwar e: Pl C18F252, L6219

Copyright (c) 2015 Robert Raney

Di stributed under the Boost Software License, Version 1.0. (See
acconpanying file LICENSE 1 0.txt or copy at
http://ww. boost. org/LI CENSE_1_0. t xt)

/

E I S R R R

#i ncl ude <assert. h>

/1 ranmp state-nachine states
enum ranp_state {
ranp_idle = 0,
ranmp_up = 1,
ranp_const = 2,
ranp_down = 3,
b

// EREE R R R R EREEEEEEEEEEEEEEEES]

/1 1. Define state variables using custom strong types

/1 initial setup
enum ranp_state ranp_sts;
position_t notor_position;

position_t m /1 target position
position_t n2; /1 mdpoint or point where accel erati on changes
direction_t d; /1 direction of traval -1 or +1

/] curent state along trave

step_t i; /'l step number

c_t c; /1 24.8 fixed point delay count increnent
ccpr_t ccpr; /1 24.8 fixed point delay count
phase_i x_t phase_i x; /1 nmotor phase index

// EREE R R R R R EREEEEEEEEEEEEREEES]

/1 2. Surround all literal values with the "literal" keyword

/1 Config data to nake CCP1&2 generate quadrature sequence on PHASE pi ns
/1 Action on CCP match: 8=set+irqg; 9=clear+irq
phase_t const ccpPhase[] = {
l'iteral (0x909),
l'iteral (0x908),
l'iteral (0x808),
l'iteral (0x809)
}; // 00,01, 11,10

void current_on(){/* code as needed */} // motor drive current
void current_off(){/* code as needed */} // reduce to hol di ng val ue

// EREE R R R EEEEEEEEEEEEEEEEEEES]

// 3. Refactor code to nake it easier to understand
// and relate to the docunentation

bool busy(){

41

Safe Numerics

}

return ranp_idle != ranp_sts;

/1 set outputs to energize nmotor coils
voi d update(ccpr_t ccpr, phase_ix_t phase_ix){

}

Il
Il
Il
11
Il

/| energize correct w ndings

const phase_t phase = ccpPhase[phase_i x];

CCP1CON = phase & literal (Oxff); // set CCP action on next match
CCP2CON = phase >> literal (8);

/1 timer value at next CCP match

CCPR1H = literal (Oxff) & (ccpr >> literal (8));

CCPRLL = literal (Oxff) & ccpr;

conpi l er-specific | SR decl aration

khkkhkkhkkhkkkhkhkhkkdkhkhkkhkxkhkhkhkdkhkhxkx

4. Rewrite interrupt handler in a way which mirrors the orginal
description of the algorithmand mnimzes usage of state variabl e,
accunul at ed val ues, etc.

void __interrupt isr_notor_step(void) { // CCP1L match -> step pulse + | RQ

/1 *** possible exception
/1 nmotor_position += d;
/1 use the following to avoid mixi ng exception policies which is an error
if(d < 0)
--not or _posi tion;
el se
++not or _posi tion;
/1 *** possible exception

++i ;
[/l calculate next difference in tinme
for(;;){

switch (ranp_sts) {
case ranp_up: // acceleration
if (i == nR) {
ranp_sts = ranp_down;
conti nue;
}
/'l equation 13
/1 *** possible negative overfl ow on update of c
c -=literal(2) * ¢/ (literal(4) * i + literal(1));
if(c < CMN({
c =CMN,
ranp_sts = ranp_const;
/1 *** possible exception

nm2 =m- i; // newinflection point
conti nue;
}
br eak;
case ranp_const: // constant speed
if(i >n2) {
ranp_sts = ranp_down;
conti nue;
}
br eak;
case ranp_down: // deceleration
if (i ==m {

ranp_sts = ranp_idl e;

current_off(); // reduce notor current to hol ding val ue
CCP1IE = literal (0); // disable_interrupts(lNT_CCP1);
return;

42

Safe Numerics

}

/'l equation 14

/1 *** possible positive overflow on update of c

/1 note: re-arrange expression to avoid negative result

/1 fromdifference of two unsigned val ues

{
/] testing discovered that this can overflow. It's not easy to
/1 avoid so we'll use a tenporary unsigned variable 32 bits wide
const tenp_t x = c + literal(2) * ¢/ (literal(4) * (m- i) - literal (1))
c=x >0 ? QO : x;

}

br eak;

defaul t:
/! shoul d never arrive here!

assert (fal se);
} /] switch (ranp_sts)

br eak;

}

assert(c <= Q

& & ¢ >= C_MN);

/1 *** possible exception
ccpr = literal (Oxffffff) & (ccpr + c);
phase_ix = (phase_ix + d) & literal (3);
updat e(ccpr, phase_ix);

} /1 isr_notor_step()

/1 set up to drive

notor to pos_new (absol ute step#)

voi d notor_run(position_t new_position) {
i f(new_position > notor_position){

d=1»Iiteral

(1)

/1 *** possible exception
m = new_position - notor_position;

}

el se

i f(motor_position > new_position){

d=1iteral

(-1);

/1 *** possible exception
m = not or_position - new_position;

}
el se{
d =1literal (0);
m= literal (0);
ranp_sts = ranp_idle; // start ranp state-nachine
return;
}
i =literal (0);

nm2 =m/ literal (2);

ranp_sts = ranp_up; // start ranp state-nachine

T1CONbi ts. TMRION = literal (0); // stop tinerl;

current_on(); // current in notor wi ndings

c = Co;

ccpr = (TMRIH << literal (8) | TMRLL) + CO + literal (1000);
phase_ix =d & literal (3);
updat e(ccpr, phase_ix);

CCP1IE = literal (1); // enable_interrupts(lNT_CCPl);

43

Safe Numerics

T1CONbits. TMRION = literal (1); // restart tinerl;
} /1 motor_run()

void initialize() {

di (); /1 disable_interrupts(G.OBAL);
nmot or _position = literal (0);

CCP1IE = literal (0); // disable_interrupts(lNTI_CCPl);
CCP2IE = literal (0); // disable_interrupts(lNT_CCP2);
PORTC = literal (0); // output_c(0);

TRISC = literal (0); // set_tris_c(0);

T3CON = literal (0);

TICON = literal (0x35);

I NTCONbits. PEIE = literal (1);

I NTCONbits. RBIF = literal (0);

ei (); /1 enabl e_interrupts(GLOBAL);
Y // initialize()

1. Define variables using strong types
2. Surround all literal values with the "literal" keyword
3. Re-factor code to make it easier to understand and compare with the algorithm as described in the original article.

4. Rewriteinterrupt handler in away which mirrors the original description of the algorithm and minimizes usage of state
variable, accumulated values, etc.

5. Digtinguish al the statements which might invoke a runtime exception with a comment. There are 12 such instances.

Finally we make a couple minor changes in motor_test3.c to verify that we can compile the exact same version of motor3.c on the
PIC aswell as on the desktop.

Summary

Theintent of this case study isto show that the Safe Numerics Library can be an essential tool in validating the correctness of C/C
++ programsin all environments - including the most restricted.

» We started with a program written for atiny micro controller for controlling the acceleration and decel eration of a stepper
motor. The algorithm for doing thisis very non-trivial and difficult provethat it is correct.

» We used the type promotion policies of the Safe Numerics Library to test and validate this algorithm on the desk top. The
tested code is also compiled for the target micro controller.

» We used strong typing features of Safe Numericsto check that all types hold the values expected and invoke no invalid implicit
conversions. Again the tested code is compiled for the target processor.

What we failed to do is to create a version of the program which uses the type system to prove that no results can be invalid. |
turns out that states such as

++i ;

c = f(c);

can't be proved not to overflow with this system. So we're left with having to depend upon exhaustive testing. It's not what we
hoped, but it's the best we can do.

../../example/motor_test3.c

Safe Numerics

5. Background

Thislibrary started out as a re-implementation of the facilities provided by David LeBlanc's Safelnt Library. | found this library
to be well done in every way. My main usage was to run unit tests for my embedded systems projects on my PC. Still, from my
perspective it had afew issues.

 Itwasalot of codein one header - 6400 lines. Very unwieldy to understand, modify and maintain.

| couldn't find separate documentation other than that in the header file.

It didn't use Boost conventions for naming.

It required porting to different compilers.

It had a very long license associated with it.

| could find no test suite for the library.

Using later versions of C++ and the its standard library, template metaprogramming and Boost libraries | managed to
(re)implement similar functionality in under 2000 ? lines of code. | promoted this version as a possible submission to the

Boost. The feedback | received convinced me that no such library would be considered acceptable to the large majority of C++
programmers. It seems that the desire for maximum performance overrides any requirement that a program be known to be free
of bugs. By thistime | had a better idea of the opportunities available with the latest version of C++ (C++14) and resolved to
address this issue by creating alibrary which would provide all the facilities of safe numerics at minimal runtime cost. The result
iswhat you see here. The library now consists of 7000 lines of code, approximately 50 separate tests and more than 60 pages of
documentation and examples.

Since | wrote the above, I've been contacted by David LeBlanc. He's been updating his package and informs me that the latest
version:

» Safelnt does not require porting for different compilers, isfully supported on gec, clang, and Visual Studio.

* Thelicense has been changed from MS-PL to MIT license.

» Thelibrary has had atest suite since before it was public, and is now located here:

 Safelnt also has no external dependencies other than standard library files, and doesn't need anything else installed to work.

His current package can now be found at in github.

6. Type Requirements

6.1. Numeric<T>

Description
A typeis Numeric if it has the properties of a number.
More specificaly, atype T is Numeric if there exists a specialization of st d: : nunmeri c_I i m t s<T>. See the documentation

for the standard library classnumeri c_I i mi t s. The standard library includes such specializations for al the built-in numeric
types. Note that this concept is distinct from the C++ standard library typetraitsis_i ntegral andis_arithmetic.

45

http://safeint.codeplex.com
http://www.boost.org
http://www.boost.org
https://github.com/dcleblanc/SafeInt

Safe Numerics

These latter fulfill the requirement of the concept Numeric. But there are types T which fulfill this concept for which

is_arithmetic<T>::value == fal se. For example seesaf e_si gned_i nt eger <i nt >,
Notation
T, U V A typethat isamodel of Numeric

Associated Types

std::nuneric_|imts<T>

Valid Expressions

An object of atype modeling Numeric

The numeric_limits class template provides a C++ program with information about various
properties of the implementation's representation of the arithmetic types. See C++ standard

18.3.2.2.

In addition to the expressions defined in Assignable the following expressions must be valid. Any operations which result in
integers which cannot be represented as some Numeric type will throw an exception.

Table 1.1. General

Expression

std::nunmeric_|limts<T>
std::numeric_|imts<T>::
std::nunmeric_limts<T>::

std::numeric_|imts<T>::

;i s_bounded
i s_i nteger
i s_signed

i s_specialized

Table 1.2. Unary Operators

Expression
-t

+t

Return Type

T

T

Return Type
bool
bool
bool

bool

Semantics

Invert sign

unary plus - ano op
post decrement
post increment

pre decrement

pre increment

Return Value

trueorfalse

trueorfal se

trueorfalse

true

46

http://www.sgi.com/tech/stl/Assignable.html

Safe Numerics

Table 1.3. Binary Operators

Expression Return Type Semantics

t - u \% subtract u from t

t +u \% addutot

t *u \Y multiply t by u

t / u T dividet by u

t %u T t modulus u

t <u bool true if tlessthan u, f al se otherwise

t <= u bool true if tlessthan or equal to u, f al se otherwise
t >u bool t rue if t greater than u, f al se otherwise

t >=u bool t rue if t greater than or equal to u, f al se otherwise
t == u bool true if tequa tou, f al se otherwise

t 1=u bool true if t not equal to u, f al se otherwise

t =u T assignvalueof utot

t +=u T addutotand assigntot

t -=u T subtract u fromt and assigntot

t *=u T multiply t by u and assign to t

t /=u T dividet by uand assigntot

Models

int, float, safe_signed_integer<int> safe_signed_range<int> checked_result<int>, etc.

Header

#i ncl ude <boost/nuneric/safe_nunerics/concepts/nuneric. hpp>

Note on Usage Of std::nuneric_linits

We define the word "Numeric" in terms of the operations which are supported by "Numeric" types. Thisisin line with the current
and historical usage of the word "concept” in the context of C++. It isalso common to define compile time predicates such as

"i s_nunmeri c<T>" to permit one to include expressions in his code which will generated a compile time error if the specified
type (T) does not support the operations required. But thisis not always true. In the C++ standard library there is a predicate

i s_arithmetic<T>whose name might suggest that it should return t r ue for any type which supports the operations above. But
thisis not the case. The standard definesi s_ari t hmet i c<T> ast r ue for any of the builtin typesi nt , | ong, f | oat , doubl e,

47

../../include/boost/safe_numerics/concept/numeric.hpp

Safe Numerics

etc and f al se for any other types. So even if a user defined type U were to support the operations above, i s_arit hmet i c<U>
would still return f al se. Thisis quite unintuitive and not a good match for our purposes. Hence we define our own term
"Numeric" to designate any type T which:;

* Supports the operations above

 Specidizesthe standard type numeric_limits

while following the C++ standard inusingi s_ari t hmeti c<T>,i s_i nt egr al <T> to detect specific types only. The standard
types are useful in various aspects of the implementation - which of courseis donein terms of the standard types.

Thisin turn raises another question: Isit "legal" to specialize st d: : numeri c_| i mi t s for one's own types such as saf e<i nt >.
In my view the standard is ambiguous on this. See various interpretations:

* isit-ok-to-specialize-stdnumeric-limitst-for-user-defined-number-like-class

* cppreference.com/w/cpp/types/numeric_limits

In any case, it seems pretty clear that no harm will come of it. In spite of the consideration given to thisissue, it turns out that

the found no real need to implement these predicates. For example, thereisno "is_numeric<T>" implemented as part of the safe
numerics library. This may changein the future though. Even if not used, defining and maintaining these type requirementsin this

document has been very valuable in keeping the concepts and code more unified and understandabl e.

Remember that above considerations apply to other numeric types used in this library even though we don't explicitly repeat this
information for every case.

6.2. Integer<T>

Description

A type fulfills the requirements of an Integer if it has the properties of ainteger.

More specifically, atype T isInteger if there exists a specialization of st d: : nuneric_l i mits<T> for which
std::numeric_limts<T> :is_integer isequa totrue. Seethe documentation for standard library class
nuneric_limts. The standard library includes such specializations for all built-in numeric types. Note that this concept is
distinct from the C++ standard library typetraitsi s_i ntegral andi s_arit hneti c. Theselatter fulfill the requirements of
the concept Numeric. But there are types which fulfill this concept for whichi s_ari t hnmeti c<T>: : val ue == fal se. For
example see saf e<i nt >.

Refinement of

Numeric

Notation
T, U V A typethat isamodel of the Integer
t, u An object of type modeling I nteger

Valid Expressions

In addition to the expressions defined in Numeric the following expressions must be valid.

48

https://stackoverflow.com/questions/16122912/is-it-ok-to-specialize-stdnumeric-limitst-for-user-defined-number-like-class
https://en.cppreference.com/w/cpp/types/numeric_limits

Safe Numerics

Table 1.4. General

Expression Value

std::nuneric_|limts<T> :is_integdme

Expression Return Type Semantics

~t T bitwise complement

t <<u T shift t left u bits

t >>u T shift t right by u bits

t &u \Y and of t and u padded out to max # bitsint, u

t | u \Y or of t and u padded out to max # bitsint, u

t ~u \Y exclusive or of t and u padded out to max # bitsint, u
t <<= u T |eft shift the value of t by u bits

t >>=u T right shift the value of t by u hits

t & u T and the value of t with u and assignto t

t |=u T or the value of t with u and assign to t

t ~=u T exclusive or the value of t with u and assignto t
Models

int, safe<int> safe_unsigned_range<0, 11>, checked_result<int> etc.

Header

#i ncl ude <boost/safe_nunerics/ concepts/integer. hpp>

6.3. SafeNumeric<T>

Description
This holds an arithmetic value which can be used as a replacement for built-in C++ arithmetic values. These types differ from

their built-in counter partsin that the are guaranteed not to produce invalid arithmetic results. These operations return safe types
rather than built-in types.

Refinement of

Numeric or Integer

49

../../include/boost/safe_numerics/concept/numeric.hpp

Safe Numerics

Notation

Symbol

T, U

t,u

S

S, s1, s2
op
prefix_op
postfix_op

assign_op

Valid Expressions

Expression

s opt

t op s

sl op s2
prefix_op S
S postfix_op
s assign_op t

t assign_op s

S(t)

S

T(s)

static_cast<T>(s)

Description

Types fulfilling Numeric or Integer type requirements.

objects of types T, U

A type fulfilling SafeNumeric type requirements

objects of types S

C++ infix operator supported by underlying type T

C++ prefix operator: -, +, ~, ++, -- supported by underlying type T

C++ postfix operator:++, -- supported by underlying type T

C++ assignment operator

Result Type
unspecified S
unspecified S
unspecified S
unspecified S
unspecified S
S&

T&

Description

invoke C++ operator op and return another SafeNumeric type.

invoke C++ operator op and return another SafeNumeric type.

invoke C++ operator op and return another SafeNumeric type.

invoke C++ operator pr ef i x_op and return another SafeNumeric type.
invoke C++ operator post f i x_op and return another SafeNumeric type.
convert t totype Sand assigniittos.

convert stotype T and assign it to s. If the value t cannot be represented as
an instance of type S, it isan error.

construct an instance of Sfrom avalue of type T. Inthiscase, T isreferred
to asthe base type of S. If the value t cannot be represented as an instance of
type S, it is an exception condition is invoked.

construct an uninitialized instance of S.

implicit conversion of the value of sto type T. If the value of s cannot be
correctly represented as atype T, an exception condition is invoked.

convert the value of sto type T. If the value of s cannot be correctly
represented as atype T, an exception condition isinvoked.

50

Safe Numerics

Expression Result Type Description

i s_saf e<S> std::true_type typetrait to query whether any type Sfulfills the requirementsfor a
SafeNumeric type.

base_t ype<S>: :type T Retrieve the base type of a given safe type.

base_val ue(s) T Retrieve the value of an instance of a safe type. Thisis equivaent to

stati c_cast <base_type<S>>(s).

» Theresult of any binary operation where one or both of the operandsis a SafeNumeric typeis also a SafeNumeric type.
* All theexpressionsin the above table are const expr expressions.

» Binary expressions which are not assignments and whose operands are both safe types require that promotion and exception
policies of the operands be identical.

e Operations on safe types are supported if and only if the sanme operation is supported on the
underlyi ng types. For exanple, the binary operations |,&, " and~ operations defined for safe unsigned
integer types. But they are not defined for floating point types. Currently the are also defined for signed integer types. It's
not clear that thisis the correct decision. On one hand, usage of these operators on signed typesis almost certainly an error
in program logic. But trapping this as an error conflicts with the goal of making safe types "drop-in" replacements for the
corresponding built-in types. In light of this, these operators are currently supported as they are for normal built-in types.

» Safe Numeric types will be implicitly converted to built-in types when appropriate. Here's an example:

void f(int);

int main()({
| ong x;
f(x); [/ OK - builtin inmplicit version
saf e<l ong> vy;

f(y);
return O;

This behavior supports the concept of saf e<T> asbeing a"drop-in" replacement for aT.

Invariants
The fundamental requirement of a SafeNumeric type isthat it implements all C++ operations permitted on its base type in away
the prevents the return of an incorrect arithmetic result. Various implementations of this concept may handle circumstances which

produce such results differently (throw exception, compile time trap, etc..). But no implementation should return an arithmetically
incorrect result.

Models

saf e<T>
saf e_si gned_range<-11, 11>
saf e_unsi gned_r ange<0, 11>

safe_signed_literal <4>

51

Safe Numerics

Header

#i ncl ude <boost/ numeri c/ saf e_nunerics/ concepts/safe_nuneric. hpp>

6.4. PromotionPolicy<PP>

Description

In C++, arithmetic operations result in types which may or may not be the same as the constituent types. A promotion policy
determines the type of the result of an arithmetic operation. For example, in the following code

int x;
char vy;
auto z = x +y

thetype of z will beani nt . Thisis aconsequence for the standard rules for type promotion for C/C++ arithmetic. A key feature
of library permits one to specify his own type promotion rules via a PromotionPolicy class.

Notation
PP A typethat full fills the requirements of a PromotionPollicy
T, U A typethat isamodel of the Numeric concept
R An object of type modeling Numeric which can be used to construct a SafeNumeric type.

Valid Expressions

Any operations which result in integers which cannot be represented as some Numeric type will throw an exception.These
expressions return atype which can be used as the basis create a SafeNumeric type.

Expression Return Value
PP::addition_resul t<T, U>: :type unspecified Numeric type
PP: :subtraction_result<T, U>: :type unspecified Numeric type
PP::nmul tiplication_result<T, U::type unspecified Numeric type
PP: : di vi sion_resul t<T, U>::type unspecified Numeric type
PP: : modul us_resul t<T, U>::type unspecified Numeric type
PP: : conpari son_resul t<T, U>: :type bool
PP::left_shift_result<T, U> :type unspecified Numeric type
PP::right_shift_result<T, u> :type unspecified Numeric type
PP: : bitwi se_or_resul t<T, U>: :type unspecified Numeric type

52

../../include/boost/safe_numerics/concept/safe_numeric.hpp

Safe Numerics

Expression Return Value

PP: : bitwi se_and_resul t<T, U>::type unspecified Numeric type

PP: : bitwi se_xor_resul t<T, U :type unspecified Numeric type
Models

The library contains a number of pre-made promotion policies:
* boost::nuneric::native

Use the normal C/C++ expression type promotion rules.

int x;

char vy;

auto z = x +vy; // could result in overflow

safe<int, native> sx;

auto sz = sx +vy; // standard C++ code which detects errors

Type sz will be a SafeNumeric type based oni nt . If the result exceeds the maximum value that can be stored inani nt , an
error is detected.

Thenat i ve policy is documented in Promotion Policies - native.
* boost::nuneric::autonmatic

Use optimizing expression type promotion rules. These rules replace the normal C/C++ type promotion rules with other rules
which are designed to result in more efficient computations. Expression types are promoted to the smallest type which can be
guaranteed to hold the result without overflow. If thereis no such type, the result will be checked for overflow. Consider the
following example:

int x;
char vy;
auto z = x +vy; // could result in overflow
safe<int, automatic> sx;
auto sz = sx + vy;
/Il sz is a safe type based on | ong
/1 hence sz is guaranteed not to overfl ow.
saf e_unsi gned_r ange<1, 4> a;
saf e_unsi gned_r ange<2, 4> b;
auto c =a +b; // c will be a safe type with a range [3,8] and cannot overfl ow

Type sz will be a SafeNumeric type which is guaranteed to hold he result of x +y. In this case that will bealongint (or
perhaps along long) depending upon the compiler and machine architecture. In this case, there will be no need for any special
checking on the result and there can be no overflow.

Type of ¢ will be asigned character as that type can be guaranteed to hold the sum so no overflow checking is done.
This policy is documented in Promotion Policies - automatic
* boost::numeric::cpp

Use expression type promotion rules to emulate another processor. When this policy is used, C++ type for safe integers follows
the rules that a compiler on the target processor would use. This permits one to test code destined for a one processor on the

53

Safe Numerics

another one. One situation there this can be very, very useful is when testing code destined for a micro controller which doesn't
have the logging, debugging, input/output facilities of a desktop.

/1 specify a pronotion policy to support proper enul ation of
/1 PIC 18f 2520 types on the desktop
usi ng pi cl6_pronotion = boost::nuneric::cpp<

8, [// char 8 bits
16, // short 16 bits
16, // int 16 bits
16, // long 16 bits

32 // long long 32 bits
>,

safe<std::uintl16_t, picl6_pronotion> x, vy;

X +y; [/l detect possible overflow on the pic.

For a complete example see Safety Critical Embedded Controller.
Header

#i ncl ude <boost/ numeri c/ saf e_nunerics/concepts/pronotion_policy. hpp>

6.5. ExceptionPolicy<EP>

Description

The exception policy specifies what isto occur when a safe operation cannot return avalid result. A typeis an ExceptionPolicy if
it has functions for handling exceptional events that occur in the course of safe numeric operations.

Notation
EP A typethat fulfills the requirements of an ExceptionPolicy
e A codefromsafe_nunerics_error
message A const char * which refers to a text message about the cause of an exception

Valid Expressions

Whenever an operation yield an invalid result, one of the following functions will be invoked.

Expression Returimvoked when:
Value
EP::on_arithmetic_error(e, message) void The operation cannot produce valid arithmetic result such as

overflows, divide by zero, etc.
EP: : on_undefi ned_behavi or (e, nessage) void Theresultisundefined by the C++ standard

EP: : on_i npl ement at i on_def i ned_behavi or (e4oid The result depends upon implementation defined behavior
nmessage) according to the C++ standard

../../include/boost/safe_numerics/concept/promotion_policy.hpp

Safe Numerics

Expression Returimvoked when:

Value
EP::on_uninitialized val ue(e, void A variableisnot initialized
nmessage)

dispatch<EP>(const safe_numerics_error & e, const char * msq)
Thisfunction is used to invoke the exception handling policy for a particular exception code.

Synopsis

tenpl at e<cl ass EP>
const expr void
di spat ch<EP>(const boost:: numneric::safe_numerics_error & e, char const * const & nsgQ);

Example of use

#i ncl ude <boost/safe_nunerics/exception_policies. hpp"

di spat ch<boost:: nuneric::|oose_exception_policy>(
boost: :nuneric::safe_numerics_error::positive_overflow error,
"operation resulted in overfl ow

)

Models

Thelibrary header <boost / nuneri cs/ saf e_numeri cs/ excepti on_pol i ci es. hpp> contains a number of pre-made
exception palicies:

* boost::nuneric::|oose_exception_policy

Throw on arithmetic errors, ignore other errors. Some applications ignore these issues and still work and we don't want to
update them.

* boost::nuneric::loose_trap_policy

Same as above in that it doesn't check for various undefined behaviors but traps at compile time for hard arithmetic errors. This
policy would be suitable for older embedded systems which depend on bit manipulation operations to work.

* boost::nuneric::strict_exception_policy
Permit just about anything, throw at runtime on any kind of error. Recommended for new code. Check everything at compile
time if possible and runtime if necessary. Trap or Throw as appropriate. Should guarantee code to be portable across
architectures.

e boost::numeric::strict_trap_policy

Same as above but requires code to be written in such away asto make it impossible for errors to occur. This naturally will
require extra coding effort but might be justified for embedded and/or safety critical systems.

* boost::nuneric::default_exception_policy

55

../../include/boost/safe_numerics/exception_policies.hpp

Safe Numerics

Aliasforstrict_exception_policy, Onewould usethisfirst. After experimentation, one might switch to one of the above
policies or perhaps use a custom policy.

Header

#i ncl ude <boost/ numeri c/ saf e_nunerics/ concepts/exception_policy. hpp>

7. Types
7.1. safe<T, PP, EP>

Description

A safe<T, PP, EP> canbeused anywhereatype T can be used. Any expression which uses this type is guaranteed to return
an arithmetically correct value or to trap in some way.

Model of
Integer
SafeNumeric

Thistype inherits all the notation, associated types and template parameters and valid expressions of SafeNumeric types. The
following specify additional features of this type.

Notation

Symbol Description

T Underlying type from which a safe type is being derived

Associated Types

PP A type which specifies the result type of an expression using safe types.
EP A type containing members which are called when a correct result cannot be returned

Template Parameters

Parameter Type Requirements Description

T Integer<T> The underlying type. Currently only integer types are supported

PP PromotionPolicy<PP> Optional promotion policy. Default valueisboost : : nuneri c: : native
EP Exception Policy<EP> Optional exception policy. Default valueis

boost: :nuneric::default_exception_policy

56

../../include/boost/safe_numerics/concept/exception_policy.hpp
http://en.cppreference.com/w/cpp/types/is_integral

Safe Numerics

See exampl es below.

Valid Expressions

Implements all expressions and only those expressions defined by the SafeNumeric<T> type requirements. Note that al these
expressions are const expr . Thus, the result type of such an expression will be another safe type. The actual type of the result of
such an expression will depend upon the specific promotion policy template parameter.

When abinary operand is applied to two instances of safe<T, PP, EP>on of the following must be true:
» The promotion policies of the two operands must be the same or one of them must be void
» The exception policies of the two operands must be the same or one of them must be void

If either of the aboveis not true, a compile error will result.

Examples of use

The most common usage would be safe<T> which uses the default promotion and exception policies. Thistypeis meant to be a
"drop-in" replacement of the intrinsic integer types. That is, expressions involving these types will be evaluated into result types
which reflect the standard rules for evaluation of C++ expressions. Should it occur that such evaluation cannot return a correct
result, an exception will be thrown.

There are two aspects of the operation of this type which can be customized with a policy. Thefirst isthe result type of an
arithmetic operation. C++ defines the rules which define this result type in terms of the constituent types of the operation.

Here we refer to these rules as "type promotion” rules. These rules will sometimes result in atype which cannot hold the actual
arithmetic result of the operation. Thisis the main motivation for making thislibrary in the first place. One way to deal with this
problem isto substitute our own type promotion rules for the C++ ones.

As a Drop-in replacement for standard integer types.

The following program will throw an exception and emit an error message at runtime if any of several eventsresult in an incorrect
arithmetic result. Behavior of this program could vary according to the machine architecture in question.

#i ncl ude <exception>
#i ncl ude <i ostreanr
#i ncl ude <safe_int eger. hpp>

void f(){
usi ng namespace boost:: nuneri c;
safe<int> j;
try {
safe<int> i;
std::cin >> i; [/ could overflow!
=i o* i /! could overfl ow
}

catch(std::exception & e){
std::cout << e.what() << std::endl;
}

std::cout << j;

The term "drop-in replacement” reveals the aspiration of this library. In most cases, this aspiration is realized. In the following
example, the normal implicit conversions function the same for safe integers as they do for built-in integers.

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>

57

Safe Numerics

usi ng nanespace boost::safe_nunerics;
int f(int i){
return i;

}

usi ng safe_t = safe<l ong>;

int main(){
const long x = 97;
f(x); /] OK - inplicit conversion to int

const safe_t y = 97,
f(y); /1l Also OK - checked inplicit conversion to int
return O;

When the saf e<l ong> isimplicitly converted to ani nt when calling f , the value is checked to be sure that it is within the legal
range of an int and will invoke an exception if it cannot. We can easily verify this by altering the exception handling policy in
the above exampleto| ocose_t rap_pol i cy. Thiswill invoke a compile time error on any conversion might invoke aruntime
exception.

#i ncl ude <boost/safe_nunerics/safe_integer. hpp>
usi ng namespace boost::safe_nunerics;
int f(int i){

return i;

}

using safe_t = safe<long, native, |oose_trap_policy>;

int main(){
const long x = 97;
f(x); /] OK - inplicit conversion to int
const safe_t y = 97;
f(y); // Wuld be OK, but will invoke conpile tine error
return O;

But this raisesit's own questions. We can see that in this example, the program can never fail:
» Thevaue97isassignedtoy

* yisconverted to anint

» and used as an argument to f

The conversion can never fail because the value of 97 can always fit into an int. But the library code can't detect this and emits the
checking code even though it's not necessary.

This can be addressed by using asafe_| i t eral . A safeliteral can contain one and only one value. All the functionsin this
library are marked const expr . So it can be determined at compile time that conversionto ani nt can never fail and no runtime
checking code need be emitted. Making this small change will permit the above example to run with zero runtime overhead while
guaranteeing that no error can ever occur.

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>
#i ncl ude <boost/safe_nunerics/safe_integer_literal.hpp>

58

Safe Numerics

usi ng nanespace boost::safe_nunerics;

int f(int i){

}

return i;

tenpl ate<i nt max_t N>
using safe_literal = safe_signed_literal <N, native, |oose_trap_policy>;

int main(){

const long x = 97;

f(x); /] OK - inplicit conversion to int
const safe_literal <97> vy;

f(y); /I K- yis atype with mn/nmx = 97,
return O;

With thistrivial example, such efforts would hardly be deemed necessary. But in a more complex case, perhaps including compile
time arithmetic expressions, it could be much more difficult to verify that the constant is valid and/or no checking code is needed.
And thereis also possibility that over the life time of the application, the compile time constants might change, thus rendering any

ad hoc analyse obsolete. Using saf e_| i t eral will future-proof your code against well-meaning, but code-breaking updates.

Adjust type promotion rules.

Another way to avoid arithmetic errors like overflow isto promote types to larger sizes before doing the arithmetic.

Stepping back, we can see that many of the cases of invalid arithmetic wouldn't exist if the result types were larger. So we
can avoid these problems by replacing the C++ type promotion rules for expressions with our own rules. This can be done

by specifying a promotion policy aut omat i c. The policy stores the result of an expression in the smallest size type that can
accommaodate the largest value that an expression can yield. No checking for exceptions is necessary. The following example

illustrates this.

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>
#i ncl ude <i ostreanr

int main(int, char[]){

using safe_int = safe<
int, boost::nuneric::automatic,
boost: : nuneric::default_exception_policy

>3

safe_int i;

std::cin >>i; // mght throw exception

auto j =i * i; // won't ever trap - result type can hold the maxi num value of i * i

static_assert(boost::nuneric::is_safe<decltype(j)>::value); // result is another safe type
static_assert(

std::nuneric_|limts<decltype(i * i)>:max() >=

std::nuneric_limts<safe int> :max() * std::nuneric_|limts<safe_ int>::nmax()
); [/ always true

return O;

Header

#i ncl ude <boost/nuneric/safe_nunerics/safe_integer. hpp>

59

../../include/boost/safe_numerics/safe_integer.hpp

Safe Numerics

7.2. safe_signed_range<MIN, MAX, PP, EP> and
safe_unsigned_range<MIN, MAX, PP, EP>

Description

Thistype holds asigned or unsigned integer in the closed range [MIN, MAX]. A saf e_si gned_r ange<M N, MAX, PP, EP>

or saf e_unsi gned_range<M N, MAX, PP, EP> can be used anywhere an arithmetic typeis permitted. Any expression which
uses either of these typesis guaranteed to return an arithmetically correct value or to trap in some way.

Notation

Symbol Description

M N, MAX Minimum and maximum values that the range can represent.

Associated Types

PP Promotion Policy. A type which specifies the result type of an expression using safe types.
EP Exception Policy. A type containing members which are called when a correct result cannot be returned

Template Parameters

Parameter Requirements Description
M N must be a non-negative The minimum non-negative integer value that this type may hold
literal
MAX must be a non-negative The maximum non-negative integer value that this type may hold
literal
MIN <= MAX must be avalid closed range
PP PromotionPolicy<PP> Default valueisboost : : nunmeri c: : native
EP Exception Policy<EP> Default valueisboost : : nuneri c: : def aul t _excepti on_policy
Model of
Integer
SafeNumeric

Valid Expressions

Implements all expressions and only those expressions defined by the SafeNumeric type requirements. Thus, the result type of
such an expression will be another safe type. The actual type of the result of such an expression will depend upon the specific
promotion policy template parameter.

60

Safe Numerics

Example of use

#i nclude <type_traits>
#i ncl ude <boost/safe_nunerics/safe_integer. hpp>
#i ncl ude <boost/safe_nunerics/saf e_i nt eger_range. hpp>

#i ncl ude <boost/safe_nunerics/utility.hpp>
usi ng nanespace boost::safe_nunerics

void f(){
saf e_unsi gned_r ange<7, 24> i
/'l since the range is included in [0,255], the underlying type of
/1 will be an unsigned char
i 0; // throws out_of range exception
i 9; [/l ok
=9; // throws out_of range exception
i =-1; // throws out_of range exception
std::uint8_t j = 4;
auto k =i + j;

/1 if either or both types are safe types, the result is a safe type
/1 determined by pronotion policy. In this instance
/1 the range of i is [7, 24] and the range of j is [0, 255].
/1 so the type of k will be a safe type with a range of [7,279]
static_assert(

i s_saf e<decl type(k)>::val ue

&& std::nuneric_limts<decltype(k)>: :mn() ==

&& std::nuneric_limts<decltype(k)>::max() == 279

"k is a safe range of [7,279]"

}

int main(){}

Header

#i ncl ude <boost/ numeric/safe_nunerics/saf e_range. hpp>

7.3. safe_signed _literal<Value, PP, EP> and
safe_unsigned_literal<Value, PP, EP>

Description

A safetype which holds aliteral value. Thisisrequired to be ableto initialize other safe types in such away that an exception
code is not generated. It is also useful when creating constexpr versions of safe types. It contains one immutable value known at
compile time and hence can be used in any constexpr expression.

Model of
Integer
SafeNumeric

Thistype inherits all the notation, associated types and template parameters and valid expressions of SafeNumeric types. The
following specify additional features of thistype.

61

../../include/boost/safe_numerics/safe_integer_range.hpp

Safe Numerics

Associated Types

PP A type which specifies the result type of an expression using safe types.
EP A type containing members which are called when a correct result cannot be returned

Template Parameters

Parameter Type Requirements Description

Val ue I nt eger value used to initialize the literal

PP PromotionPolicy<PP> Optional promotion policy. Default valueisvoi d
EP Exception Policy<EP> Optional exception policy. Default valueisvoi d

Inherited Valid Expressions

safe literal types are immutable. Hence they only inherit those valid expressions which don't change the value. This excludes
assignment, increment, and decrement and all unary operators except unary -, + and ~. Other than that, they can be used
anywhere a SafeNumeric type can be used. Note that the default promotion and exception policies are void. Thisis usually
convenient since when a safe literal is used in a binary operation, thiswill inherit the policies of the other type. On the other hand,
this can be inconvenient when operands of a binary expression are both safe literals. Thiswill fail to compile since there are no
designated promotion and exception policies. The way to address thisto assign specific policies asin this example.

t enpl at e<t ypenane T>
using conpile_tinme_value = safe_signed_literal <T>;

const expr conpile_tinme_val ue<1000> x;
const expr conpile_time_val ue<0> vy;

/'l shoul d conpile and execute without problem
std::cout << x << '\n';
/1 all the followi ng statenments should fail to conpile because there are

/1 no pronotion and exception policies specified.
constexpr safe<int>z = x / vy;

Example of use

#i ncl ude <boost/nuneric/safe_nunerics/safe_integer_literal.hpp>

const expr boost::nuneric::safe_signed_|iteral <42> x;

make_safe literal (n, PP, EP)

Thisisamacro which returns an instance of a safe literal type. Thisinstance will hold the value n. The type of the value returned
will be the smallest safe type which can hold the value n.

Header

#include <boost/numeric/safe_numerics/safe_integer_literal.hpp>

62

../../include/boost/safe_numerics/safe_integer_literal.hpp

Safe Numerics

7.4. exception

Description

Here we describe the data types used to refer to exceptional conditions which might occur. Note that when we use the word
"exception”, we don't mean the C++ term which refersto a data type, but rather the colloquia sense of aanomaly, irregularity,
deviation, special case, isolated example, peculiarity, abnormality, oddity; misfit, aberration or out of the ordinary occurrence.
This concept of "exception” is more complex that one would think and hence is not manifested by a single simple type. A small
number of types work together to implement this concept within the library.

We've leveraged on the std::error_code which is part of the standard library. We don't use all the facilities that it offers so it's not
an exact match, but it's useful and works for our purposes.

enum class safe_numerics_error

The following values are those which a numeric result might return. They resemble the standard error codes used by C++
standard exceptions. This resemblance is coincidental and they are wholly unrelated to any codes of similar names. The reason
for the resemblance isthat the library started it's development using the standard library codes. But as devel opment progressed

it became clear that the original codes weren't sufficient so now they stand on their own. Here are alist of error codes. The
description of what they mean is

Symbol Description

success successful operation - no error returned

positive_overflow error A positive number istoo large to be represented by the data type

negative_overfl ow error The absolute value of a negative number istoo large to be represented by the data type.
domai n_error the result of an operation is outside the legal range of the result.

range_error an argument to afunction or operator is outside the legal range - e.g. sqrt(-1).

preci sion_overfl ow error precision waslost in the course of executing the operation.

under fl ow_error A number istoo close to zero to be represented by the data type.

uninitialized_val ue According to the C++ standard, the result may be defined by the application. e.g. 16 >> 10
will result the expected result of 0 on most machines.

The above listed codes can be transformed to ainstance of type st d: : er r or _code with the function:
std::error_code nake_error_code(safe_nunerics_error e)

This object can be

enum class safe_numerics_actions

The above error codes are classified into groups according to how such exceptions should be handled. The following table shows
the possible actions that an error could be mapped to.

63

http://en.cppreference.com/w/cpp/error/error_code
http://en.cppreference.com/w/cpp/error/error_code

Safe Numerics

Symbol Description

no_action successful operation - no action action required

uni ni tialized_val ue report attempt to use an uninitialized value - not currently used
arithmetic_error report an arithmetic error

i mpl enent ati on_def i ned_begeari an operation which the C++ standard permits but fails to specify

undef i ned_behavi or report an operation whose result is undefined by the C++ standard.

Trandation of asaf e_numeri cs_error intothe corresponding saf e_numeri cs_act i on can be accomplished with the
following function:

constexpr enum safe_nunerics_actions
make_safe_nunerics_acti on(const safe_numerics_error & e);

See Also
» C++ Standard Library version The C++ standard error handling utilities.

» Thinking Asynchronously in C++ Another essential reference on the design and usage of the error_code

Header

#i ncl ude <boost/ numeric/ saf e_nunerics/ exception. hpp>

7.5. exception_policy<AE, IDB, UB, UV>

Description

Create avalid exception policy from 4 function objects. This specifies the actions to be taken for different types of invalid results.

Notation
Symbol Description
e instance of athe type safe_numerics_error
message pointer to const char * error message

Template Parameters

Par amefgype Requirements Invoked when;
AE Function object callable with the expression The operation cannot produce valid arithmetic result such as
AE()(e, message) overflows, divide by zero, etc.

64

http://en.cppreference.com/w/cpp/error
http://blog.think-async.com/2010/04/system-error-support-in-c0x-part-1.html
../../include/boost/safe_numerics/exception.hpp

Safe Numerics

Par amefgype Requirements Invoked when:

uB Function object callable with the expression The result is undefined by the C++ standard
UB()(e, message)

I DB Function object callable with the expression The result depends upon implementation defined behavior according
IDB()(e, to the C++ standard

w Function object callable with the expression A variableisnot initialized
UV ()(e, message)

Model of
ExceptionPolicy

Inherited Valid Expressions

This class implements all the valid operations from the type requirements ExceptionPolicy. Aside from these, there are no other
operations implemented.

Function Objects

In order to create an exception policy, one needs some function objects. The library includes some appropriate examples of these:

Name Description

i gnore_exception Ignore any runtime exception and just return - thus propagating the error. Thisis what would
happen with unsafe data types

t hr ow_excepti on throw an exception of type std::system_error

trap_exception Invoke afunction which is undefined. Compilers will include this function if and only if there

isapossibility of aruntime error. Conversely, Thiswill create a compile time error if there
is any possibility that the operation will fail at runtime. Use the action to guarantee that your
application will never produce an invalid result. Any operation invoke

But of course oneis freeto provide his own. Here is an example of afunction object which would could be used exception
conditions.

/'l 1og an exception condition but continue processing as though nothing has happened
/1 this would enul ate the behavior of an unsafe type.
struct |og_runtime_exception {
| og_runtine_exception() = default;
voi d operator () (
const boost::safe_nunerics::safe_nunerics_error & e,
const char * nessage

)
std: : cout
<< "Caught systemerror with code "
<< boost::safe_nunerics::literal _string(e)
<< " and nessage " << nessage << '\n';
}

65

Safe Numerics

Policies Provided by the library

The above function object can be composed into an exception policy by this class. The library provides common policies all
ready to use. In the table below, the word "loose" is used to indicate that implementation defined and undefined behavior is not
considered an exceptional condition, while "strict” means the opposite. The word "exception” means that a runtime exception will
be thrown. The word "trap” means that the mere possibility of an error condition will result in acompile time error.

Name Description

loose_exception_policy Throws runtime exception on any arithmetic error. Undefined and implementation defined
behavior is permitted aslong as it does not produce an arithmetic error.

| oose_trap_policy Invoke a compile time error in any case where it's possible to result in an arithmetic error.

strict_exception_policy Throwsruntime exception on any arithmetic error. Any undefined or implementation defined
behavior aso results in throwing an exception.

strict_trap_policy Invoke a compile time error in any case where it's possible to result in an arithmetic error,
undefined behavior or implementation defined behavior

def aul t _exception_policyanaiasforstrict_exception_policy

If none of the above suit your needs, you're free to create your own. Here is one where use the logging function object defined
above as a component in aloose exception policy which logs any arithmetic errors and ignores any other types of errors.

/1 1ogging policy
/1 log arithmetic errors but ignore them and continue to execute
/1 inmplenentati on defined and undefined behavior is just executed

/1 without | ogging

usi ng | oggi ng_exception_policy = exception_policy<

| og_runti me_exception, /] arithnetic error
i gnor e_excepti on, /'l inmplenentati on defined behavi or
i gnor e_excepti on, /'l undefined behavi or
i gnore_exception /1 uninitialized val ue
>
Header

#i ncl ude <boost/nuneric/safe_numerics/ exception_policies. hpp>

7.6. Promotion Policies

native

Description

This type contains the functions to return a safe type corresponding to the C++ type resulting from a given arithmetic operation.

66

../../include/boost/safe_numerics/exception_policies.hpp

Safe Numerics

Usage of this policy with safe types will produce the exact same arithmetic results that using normal unsafe integer types will.
Hence this policy is suitable as a drop-in replacement for these unsafe types. Its main function isto trap incorrect arithmetic
results when using C++ for integer arithmetic.

Model of

PromotionPolicy

As an example of how this works consider C++ rules from section 5 of the standard - "usual arithmetic conversions'.

void int f(int x, int y){
auto z = x +y; // z will be of type "int"
return z;

According to these rules, z will be of typeint. Depending on the values of x and 'y, z may or may not contain the correct
arithmetic result of the operation x +y.

using safe_int = safe<int, native>;

void int f(safe_int x, safe_int y){
auto z = x +y; // z will be of type "safe_int"
return z;

Example of use

The following example illustrates the nat i ve type being passed as atemplate parameter for the type saf e<i nt >. This example
isdightly contrived in that saf e<i nt > hasnat i ve asits default promotion parameter so explicitly using nat i ve is not
necessary.

#i ncl ude <cassert>
#i ncl ude <boost/ numeri c/ saf e_nunerics/ safe_i nteger. hpp>
#i ncl ude <boost/ numeri c/saf e_nunerics/ native. hpp>
int main(){
usi ng namespace boost:: numeri c;
/1 use native pronotion policy where C++ standard arithmetic
/1 mght lead to incorrect results
using safe_int8 = safe<std::int8_t, native>;
tryf
safe_int8 x
safe_int8 y
safe_int8 z;
/1 rather than producing an invalid result an exception is thrown
Z =X +Vy;
assert(false); // never arrive here

127;
2;

}

catch(std::exception & e){
/1 which we can catch here
std::cout << e.what() << std::endl;

}

/1 When result is an int, C++ pronotion rules guarentee

/1 that there will be no incorrect result.

/1 In such cases, there is no runtinme overhead from using safe types.
safe_int8 x = 127;

safe_int8 y = 2;

67

Safe Numerics

safe<int, native> z; // z can now hold the result of the addition of any two 8 bit nunbers
z =X +vy; [l is guaranteed correct w thout any runtine overhead or exception.

return O;

Notes
See Chapter 5, Expressions, C++ Standard
Header

#i ncl ude <boost/ numneric/safe_nunerics/native. hpp>
automatic

Description

This type contains the meta-functions to return a type with sufficient capacity to hold the result of a given binary arithmetic
operation.

The standard C/C++ procedure for executing arithmetic operations on operands of different typesis:
 Convert operands to some common type using a somewhat el aborate el aborate rules defined in the C++ standard.
» Execute the operation.
« If the result of the operation cannot fit in the common type of the operands, discard the high order bits.
The automatic promotion policy replaces the standard C/C++ procedure for the following one:
» Convert operands to some common type using to the following rules.
« For addition. If the operands are both unsigned the common type will be unsigned. Otherwise it will be signed.
« For subtraction, the common type will be signed.
 For left/right shift, the sign of the result will be the sign of the left operand.
« For al other types of operants, if both operands are unsigned the common type will be unsigned. Otherwise, it will be signed.
» Determine the smallest size of the signed or unsigned type which can be guaranteed hold the result.
« If this size exceeds the maximum size supported by the compiler, use the maximum size supported by the compiler.
» Execute the operation.
» Convert each operand to the common type.
« If the result cannot be contained in the result type as above, invoke an error procedure.
« Otherwise, return the result in the common type

Thistype promation policy is applicable only to safe types whose base type is an Integer type.

Model of

PromotionPolicy

68

../../include/boost/safe_numerics/native.hpp

Safe Numerics

Example of use

The following example illustrates the aut omat i ¢ type being passed as atemplate parameter for the type saf e<i nt >.

#i ncl ude <boost/safe_nunerics/safe_i nteger. hpp>
#i ncl ude <boost/safe_nunerics/automatic. hpp>

int main(){
usi ng nanespace boost:: nuneric;
/1 use automatic pronotion policy where C++ standard arithnetic
/1 mght lead to incorrect results
using safe_t = safe<std::int8 t, automatic>;

/1 In such cases, there is no runtine overhead from using safe types.
safe t x = 127;

safe t y = 2;

/1l z is guaranteed correct w thout any runti ne overhead or exception.
auto z = x +vy;

return O;

Header

#i ncl ude <boost/ numeric/safe_nunerics/automatic. hpp>
cpp<int C,int S, intl,intL,int LL>

Description

Thispolicy isused to promote safe types in arithmetic expressions according to the rulesin the C++ standard. But rather than
using the native C++ standard types supported by the compiler, it uses types whose length in number of bitsis specified by the
template parameters.

This policy isuseful for running test programs which use C++ portable integer types but which are destined to run on an
architecture which is different than the one on which the test program is being built and run. This can happen when developing
code for embedded systems. Algorithms devel oped or borrowed from one architecture but destined for another can be tested on
the desktop.

Note that this policy is only applicable to safe types whose base type is atype fulfilling the type requirements of Integer.

Template Parameters

Par ameter Type Description

C int Number of bitsin a char

S int Number of bitsin a short

I int Number of bitsin an integer
L int Number of bitsinalong

LL int Number of bitsin along long

69

../../include/boost/safe_numerics/automatic.hpp

Safe Numerics

Model of
PromotionPolicy

Example of Use

Consider the following problem. One is devel oping software which uses a very small microprocessor and avery limited C
compiler. The chip is so small, you can't print anything from the code, log, debug or anything else. One debugs this code by using
the "burn" and "crash" method - you burn the chip (download the code), run the code, observe the results, make changes and try
again. Thisisacrude method which is usually the one used. But it can be quite time consuming.

Consider an alternative. Build and compile your code in testable modules. For each module write atest which exercises all the
code and makes it work. Finally download your code into the chip and - voila - working product. This sounds great, but there's
one problem. Our target processor - in this case a PIC162550 from Microchip Technology is only an 8 bit CPU. The compiler
we use defines INT as 8 bits. This (and afew other problems), make our agorithm testing environment differ from our target
environment. We can address this by defining INT as a safe integer with arange of 8 bits. By using a custom promation policy,
we can force the evaluation of C++ expressionsin the test environment to be the same as that in the target environment. Also
in our target environment, we can trap any overflows or other errors. So we can write and test our code on our desktop system
and download the code to the target knowing that it just has to work. Thisis a huge time saver and confidence builder. For an
extended example on how thisis done, look at Safety Critical Embedded Controller .

Header

#i ncl ude <boost/ nuneric/safe_nunerics/cpp. hpp>

8. Exception Safety

All operationsin this library are exception safe and meet the strong guarantee.

9. Library Implementation

Thislibrary should compile and run correctly on any conforming C++14 compiler.

The Safe Numerics library isimplemented in terms of some more fundamental software components described here. It is not
necessary to know about these components to use the library. Thisinformation has been included to help those who want to
understand how the library works so they can extend it, correct bugsin it, or understand its limitations. These components are also
interesting and likely useful in their own right. For all these reasons, they are documented here.

In general terms, the library works in the following manner:
At compile time:
» Thelibrary defines "saf€" versions of C++ primitive arithmetic types such asi nt , unsi gned i nt, etc.

» Arithmetic operators are defined for these "safe" types. These operators are enhanced versions of the standard C/C++
implementations. These operators are declared and implemented in the files "safe_base.hpp" and "safe_base operations.hpp".

* For binary operators, verify that both operands have the same promotion and and exception handling policies. If they don't,
invoke compilation error.

* Invoke the promotion policy to determine the result type R of the operation.

* For each operand of type T retrieve the range of valuesfromstd: : numeric_limits<T>::mn() and
std::numeric_limts<T>::max().A rangeisapair of values representing a closed interval with a minimum and
maximum value.

70

../../include/boost/safe_numerics/cpp.hpp
../../include/boost/safe_numerics/safe_base.hpp
../../include/boost/safe_numerics/safe_base_operations.hpp

Safe Numerics

These ranges are cast to equivalent values of the result type, R. It's possible that values cannot be cast to the result type so the
result of the cast isreturned as avariant type, checked_r esul t <R>. checked_r esul t <R> may hold either avalue of type
Rorasafe _numerics_error vaueindicating why the cast could not be accomplished. Ranges are represented as a pair of
values of thetype checked_resul t <R>.

checked_resul t <R> can be considered enhanced versions of the underlying type R. Operations which are legal on values of
typeR such as +, -, ... are also legal on values of checked_r esul t <R>. The difference isthat the latter can record operation
failures and propagate such failures to subsequent operations.checked_r esul t <R> isimplemented in the header file
"checked result.hpp". Operations on such types are implemented in "checked_result_operations.hpp".

Given the ranges of the operands, determine the range of the result of the operation using compile-time interval arithmetic.
The const expr facility of C++14 permits the range of the result to be calculated at compile time. Interval arithmeticis
implemented in the header file "interval .hpp". The range of the result is also represented as a pair of values of the type
checked_resul t <R>.

Operations on primitives are implemented via free standing functions described as checked arithmetic. These operations will
return instances of checked resul t <R>.

At runtime

If the range of the result type includes only arithmetically valid values, the operation is guaranteed to produce an arithmetically
correct result and no runtime checking is necessary. The operation invokes the original built-in C/C++ operation and returns the
result value.

Otherwise, operands are cast to the result type, R, according to the selected promotion policy. These "checked" cast operations
return values of type checked_r esul t <R>.

If either of the casting operations fails, an exception is handled in accordance with the exception policy.

Otherwise, the operation is performed using "checked arithmetic". These free functions mirror the normal operators +, -, *, ...
except that rather than returning values of type R, they return values of the type checked_r esul t <R>. They are defined in
files "checked_default.hpp”, "checked integer.hpp" ,"checked float.hpp".

If the operation is not successful, the designated exception policy function is invoked.

Otherwise, the result value is returned as a saf e<R> type with the above calculated result range.

The following components realize the design described here.

9.1. checked result<R>

Description

checked result is aspecial kind of variant class designed to hold the result of some operation. It can hold either the result of the
operation or information on why the operation failed to produce avalid result. It is similar to other types proposed for and/or
included to the C++ standard library or Boost such as expect ed, vari ant, opti onal and out cone. In some circumstances it
may be referred to as a"monad".

All instances of checked_r esul t <R> areimmutable. That is, once constructed, they cannot be altered.
There is no default constructor.
checked_resul t <R> isnever empty.

Binary operations supported by type R are guaranteed to be supported by checked result<R>.

71

../../include/boost/safe_numerics/checked_result.hpp
../../include/boost/safe_numerics/checked_result_operations.hpp
../../include/boost/safe_numerics/interval.hpp
../../include/boost/safe_numerics/checked_default.hpp
../../include/boost/safe_numerics/checked_integer.hpp
../../include/boost/safe_numerics/checked_float.hpp

Safe Numerics

 Binary operations can beinvoked on apair of checked_r esul t <R> instancesif and only if the underlying type (R) is
identical for both instances. They will return avalue of type checked_r esul t <R>.

» Unary operations can be invoked on checked_r esul t <R> instances. They will return avalue of type checked_r esul t <R>.

» Comparison operations will return aboost : : | ogi c: : t ri bool . Other binary operations will avalue of the same type as the
arguments.

Think of checked<R> as an "extended" version of R which can hold all the valuesthat R can hold in addition other "special
values'. For example, consider checked<int>.

Notation
Symboal Description
R Underlying type
r Aninstance of type R
c, cl, c2 an instance of checked_result<R>
t an instance of checked result<T> for some type T not necessarily the sameas R
e An instance of type saf e_nuneri cs_error
nsg An instance of type const char *
oS A type convertibleto st d: : basi c_ost ream
0s An instance of type convertibleto st d: : basi c_ostream

Template Parameters

R must model the type requirements of Numeric

Par ameter Description

R Underlying type
Model of
Numeric

Valid Expressions

All expressions are const expr .

Expression Return Type Semantics
checked_resul t(r) checked_r esul t <Reonstructor with valid instance of R

72

Safe Numerics

Expression

checked_resul t <R>(t)

checked_result (e, nsQg)

static_cast<R>(c)

Return Type Semantics

checked_resul t <Reonstructor with checked_resul t <T>whereTisnotR. T
must be convertibleto R.

checked_r esul t <Reonstructor with error information

R extract wrapped value - compile time error if not possible

static_cast<saf e_nunerics_error>eaf e_nuneri cs_er extract wrapped value - may return

static_cast<const char *>(c)
c. exception()

cl < c2
cl >= c2
cl > c2
cl <= c2
cl == c2
cl !=1c2

cl + c2
cl - c2
cl * ¢c2
cl/ c2
cl %c2
cl | c2
cl & c2
cl N c2
cl << c2
cl >> c2

0s << C

Example of use

safe_nunerics_error::success if thereisno error
const char * returns pointer to the included error message
bool trueif checked_resul t containsan error condition.

boost : : | ogi c: : t r cboyare the wrapped values of two checked_result instances.
If the values are such that the result of such a comparison
cannot be reasonably defined, The result of the comparisonis
boost::logic::tribool::indeterm nant.

checked_resul t <Reeturnsanew instance of checked_r esul t <R>.

cs writes result to output stream. If the result is an error it writes
the string corresponding to the error message. Otherwise,
it writes the numeric value resulting from the operation.
Returns reference to output stream.

/1 Copyright (c) 2018 Robert Raney

Il

/1 Distributed under the Boost Software License, Version 1.0. (See
/1 acconpanying file LICENSE 1 0.txt or copy at
/1 http://ww. boost.org/LI CENSE_1_0. t xt)

#i ncl ude <i ostreanr

#i ncl ude <boost/safe_nunerics/checked_result. hpp>
#i ncl ude <boost/safe_nunerics/checked_resul t _operations. hpp>

int main(){

usi ng ext_uint = boost::safe_nunerics::checked_result<unsigned int>;

const ext_uint x{4};

73

Safe Numerics

const ext_uint y{3};

/1 operation is a success!
std::cout << "success! x - y =

<< X - Y,

/1 subtraction would result in -1, and invalid result for an unsigned val ue
std::cout << "problem y - x =" <<y - X

const ext_uint z =y - Xx;

std::cout << "z =" << z;

/1 sum of two negative overflows is a negative overflow
std::cout << "z + 2" <<z + 2

return O;

See Also
ExceptionPolicy
Header

#i ncl ude <boost/ nuneric/safe_numnerics/checked _result. hpp>

#i ncl ude <boost/nuneric/safe_numerics/checked result _operations. hpp>

9.2. Checked Arithmetic

Description

Perform binary operations on arithmetic types. Return either avalid result or an error code. Under no circumstances should an
incorrect result be returned.

Type requ irements

All template parameters of the functions must model Numeric type requirements.
Complexity

Each function performs one and only one arithmetic operation.

Example of use

#i ncl ude <boost/ nuneric/safe_nunerics/ checked_defaul t. hpp>

checked_result<int> r = checked:: nultiply<int>(24, 42);

Notes

Some compilers have command line switches (e.g. -ftrapv) which enable special behavior such that erroneous integer operations
are detected at run time. The library has been implemented in such away that these facilities are not used. It's possible they might
be helpful in particular environment. These could be be exploited by re-implementing some functionsin thislibrary.

74

../../include/boost/safe_numerics/checked_result.hpp
../../include/boost/safe_numerics/checked_result_operations.hpp

Safe Numerics

Synopsis

/'l safe casting on primtive types
tenpl ate<cl ass R, class T>
checked_resul t <R> constexpr checked::cast(const T & t);

/1 safe addition on prinitive types
tenpl at e<cl ass R>
checked_resul t <R> const expr checked::add(const R & t, const R & u);

/1 safe subtraction on prinitive types
tenpl at e<cl ass R>
checked_resul t <R> const expr checked:: subtract(const R & t, const R & u);

/1 safe multiplication on primtive types
tenpl at e<cl ass R>
checked_resul t <R> const expr checked::nultiply(const R &t, const R & u);

/1 safe division on prinitive types
tenpl at e<cl ass R>
checked_resul t <R> const expr checked: : divide(const R & t, const R & u);

/1 safe nbdulus on primtive types
tenpl at e<cl ass R>
checked_resul t <R> const expr checked:: nodul us(const R & t, const R & u);

/1 safe less than predicate on prinmtive types
tenpl at e<cl ass R>
bool constexpr checked::less_than(const R & t, const R & u);

/'l safe greater_than_equal predicate on prinmtive types
tenpl at e<cl ass R>
bool constexpr checked:: greater_than_equal (const R & t, const R & u);

/| safe greater_than predicate on prinitive types
tenpl at e<cl ass R>
bool constexpr checked::greater_than(const R & t, const R & u);

/'l safe | ess_than_equal predicate on prinmtive types
tenpl at e<cl ass R>
bool constexpr checked::|ess_than_equal (const R & t, const R & u);

/'l safe equal predicate on primtive types
tenpl at e<cl ass R>
bool constexpr checked::equal (const R & t, const R & u);

/1l left shift
tenpl at e<cl ass R>
checked_resul t <R> constexpr checked::|eft_shift(const R & t, const R & u);

/1 right shift
tenpl at e<cl ass R>
checked_resul t <R> constexpr checked::right_shift(const R&t, const R & u);

/1 bitw se operations
tenpl at e<cl ass R>
checked_resul t <R> const expr checked:: bitwi se_or(const R & t, const R & u);

tenpl at e<cl ass R>

75

Safe Numerics

checked_resul t <R> const expr checked: : bi twi se_and(const R & t, const R & u);

tenpl at e<cl ass R>
checked_resul t <R> const expr checked: : bi twi se_xor(const R &t, const R & u);

See Also

checked_result<R>

Header
#i ncl ude <boost/ numneric/saf e_nunerics/checked_defaul t. hpp>
#i ncl ude <boost/ numeri c/ saf e_nunerics/ checked_i nteger. hpp>

#i ncl ude <boost/ numeric/saf e_nunerics/checked_fl oat. hpp>

9.3. interval<R>

Description

A closed arithmetic interval represented by apair of elements of type R. In principle, one should be able to use Boost.Interval
library for this. But the functionsin thislibrary are not const expr . Also, this Boost.Interval is more complex and does not
support certain operations such bit operations. Perhaps some time in the future, Boost.Interval will be used instead of this

i nt erval <R>type.

Template Parameters

R must model the type requirements of Numeric. Note thisin principle includes any humeric type including floating point
numbers and instances of checked_r esul t <R>.

Notation
Symbol Description
I Aninterval type
i,] Aninstance of interval type
R Numeric types which can be used to make an interval
r Aninstance of type R
p An instance of std::pair<R, R>
I, u Lowermost and uppermost valuesin an interval
0s std::basic_ostream<class CharT, class Traits = std::char_traits<CharT>>

Associated Types

checked_resul t holds either the result of an operation or information as to why it failed

76

../../include/boost/safe_numerics/checked_default.hpp
../../include/boost/safe_numerics/checked_integer.hpp
../../include/boost/safe_numerics/checked_float.hpp

Safe Numerics

Valid Expressions

Note that all expressions are constexpr.

Expression Return Type Semantics

interval <R>(l, u) interval <R> construct a new interval from a pair of limits

i nterval <R>(p) i nterval <R> construct anew interval from a pair of limits

interval <R>(i) i nterval <R> copy constructor

meke_i nterval <R>() interval <R> return new interval with std::numric_limits<R>::min() and

std::numric_limits<R>::max()

make_i nt er val <R>(constt er val <R> return new interval with std::numric_limits<R>::min() and

R &r) std::numric_limits<R>::max()

il R lowermost value in the interval i

i.u R uppermost value in the interval i

i .includes(j) boost: : 1 ogi c:: tri bogkturntrueif interval i includesinterval j

i .excludes(j) boost: : 1 ogi c:: tri bodgkturntrueif interval i includesinterval j

i .includes(t) bool return true if interval i includes valuet

i .excludes(t) bool return true if interval i includes valuet

i+ i nterval <R> add two intervals and return the result

i- i nterval <R> subtract two intervals and return the result

i i nterval <R> multiply two intervals and return the result

i/ i nterval <R> divide oneinterval by another and return the result

i %] i nterval <R> calculate modulus of oneinterval by another and return the result

i << i nterval <R> calculate the range that would result from shifting one interval by another

i >> i nterval <R> calculate the range that would result from shifting one interval by another

i i nterval <R> range of values which can result from applying | to any pair of operands
from 1 and j

i & i nterval <R> range of values which can result from applying & to any pair of operands
from 1 and j

i N i nterval <R> range of values which can result from applying ~ to any pair of operands

from 1 and j

Safe Numerics

Expression Return Type Semantics

t <u boost:: 1 ogic::tribodfueif every element intislessthan every elementinu

t >u boost:: 1 ogic:: tribodfueif every element intis greater than every elementinu

t <= u boost: : 1 ogic:: tribodfueif every element intislessthan or equal to every elementinu

t >=u boost:: 1 ogic::tribodiueif every elementintisgreater than or equal to every elementinu
t == bool trueif limits are equal

t 1=u bool trueif limits are not equal

0s << i 0s & print interval to output stream

Example of use

#i ncl ude <i ostrean»

#i ncl ude <cstdint>

#i ncl ude <cassert >

#i ncl ude <boost/nuneric/safe_nunerics/interval.hpp>

int main(){
std::cout << "testl" << std::endl;
interval <std::intl6_t> x = {-64, 63};

std::cout << "x =" << x << std::endl;

interval <std::intl6_t> y(-128, 126);

std::cout << "y = " <<y << std::endl;

assert(static_cast<interval <std::int16_t>>(add<std::int1l6_t>(x,x)) ==yY);

<< add<std::intl6_t>(x, X) << std::endl;
<< subtract<std::intl6_t>(x, x) << std::endl;

std::cout << "x + X
std::cout << "x - X
return O;

Header

#i ncl ude <boost/ numneric/safe_nunerics/interval.hpp>

9.4. safe_compare<T, U>
Synopsis

/'l compare any pair of integers
tenpl ate<class T, class U>
bool constexpr safe_conpare::less_than(const T & I hs, const U & rhs);

tenpl ate<class T, class U>
bool constexpr safe_conpare::greater_than(const T & | hs, const U & rhs);

tenpl ate<class T, class U>
bool constexpr safe_conpare::less_than_equal (const T & | hs, const U & rhs);

78

../../include/boost/safe_numerics/interval.hpp

Safe Numerics

tenpl ate<class T, class U>
bool constexpr safe_conpare::greater_than_equal (const T & | hs, const U & rhs);

tenpl ate<class T, class U>
bool constexpr safe_conpare::equal (const T & | hs, const U & rhs);

tenpl ate<class T, class U>
bool constexpr safe_conpare::not_equal (const T & | hs, const U & rhs);

Description

Compare two primitive integers. These functions will return a correct result regardless of the type of the operands. Specifically it
is guaranteed to return the correct arithmetic result when comparing signed and unsigned types of any size. It does not follow the
standard C/C++ procedure of converting the operands to some common type then doing the compare. So it is not equivalent to the
C/C++ binary operations <, >, >=, <=, ==, | = and shouldn't be used by user programs which should be portable to standard C/C++
integer arithmetic. The functions are free functions defined inside the namespace boost : : nuneri c: : saf e_conpare.

Type requirements

All template parameters of the functions must be C/C++ built-in integer types, char , i nt

Complexity

Each function performs one and only one arithmetic operation.

Example of use

#i ncl ude <cassert>
#i ncl ude <safe_conpare. hpp>

usi ng nanespace boost:: nuneric;
const short int x = -64;
const unsigned int y = 42000;

assert(x <y); // fails
assert (safe_conpare::less_than(x, y)); // XK

Header

#i ncl ude <boost/nuneric/safe_nunerics/safe_conpare. hpp>

10. Performance Tests

Our goal isto create facilities which make it possible to write programs known to be correct. But we also want programmers to
actually use the facilities we provide here. This won't happen if using these facilities impacts performance to a significant degree.
Although we've taken precautions to avoid doing this, the only real way to know isto create and run some tests.

So far we've only run one explicit performancetest - t est _per f or mance. cpp. Thisruns atest from the Boost Multiprecision
library to count prime numbers and makes extensive usage of integer arithmetic. We've run the tests with unsi gned integers and
with saf e<unsi gned> on two different compilers.. No other change was made to the program. We list the results without further
comment.

g++ (GCO) 6.2.0

79

../../include/boost/safe_numerics/safe_compare.hpp
../../test/test_performance.cpp

Safe Numerics

Testing type unsigned:

time

= 17.6215

count = 1857858
Testing type saf e<unsi gned>:

time

= 22.4226

count = 1857858

cl ang-802. 0. 41
Testing type unsigned:

time

= 16.9174

count = 1857858
Testing type saf e<unsi gned>:

time

= 36. 5166

count = 1857858

11. Rationale and FAQ

11.1.

11.2.

11.3.

11.4.

11.5.

11.6.

Isthisreally necessary? If I'm writing the program with the requisite care and competence, problems noted in the
introduction will never arise. Should they arise, they should be fixed "at the source" and not with a"band aid" to cover up
bad practice.

This surprised me when it was first raised. But some of the feedback |'ve received makes me think that it's awidely

held view. The best answer isto consider the examplesin the Tutorials and Motivating Examples section of the library
documentation. | believe they convincingly demonstrate that any program which does not use this library must be assumed
to contain arithmetic errors.

Can safe types be used as drop-in replacements for built-in types?

Almost. Replacing all built-in types with their safe counterparts should result in a program that will compile and run as
expected. Occasionally compile time errors will occur and adjustments to the source code will be required. Typically these
will result in code which is more correct.

Why are there special typesfor literal such assaf e_si gned_I i t er al <42>? Why not just use std::integral_const<int,
42>7?

By defining our own "special” type we can simplify the interface. Using st d: : i nt egral _const requires one to specify
both the type and the value. Using saf e_si gned_| i t er al <42> doesn't require a parameter for the type. So the library
can select the best type to hold the specified value. It also means that one won't have the opportunity to specify atype-
value pair which are inconsistent.

Why is safe...literal needed at all? What's the matter with const saf e<i nt >(42) ?

const saf e<i nt>(42) lookslike it might be what we want: An immutable value which invokes the "saf€" operators
when used in an expression. But there is one problem. The st d: : numeri c_l i i t s<saf e<i nt >> isarange from
INTMIN to INTMAX even though the value is fixed to 42 at compile time. It is this range which is used at compile time
to calculate the range of the result of the operation.

So when an operation is performed, the range of the result is calculated from [INTMIN, INTMAX] rather than from
[42,42].

Are safe type operations const expr ? That is, can they be invoked at compile time?

Y es. safe type construction and calculations are all const expr . Note that to get maximum benefit, you'll have to use
safe...literal tospecify the primitive values at compiletime.

Why definesafe_Iiteral ?lsn'tit effectively thesameasstd: : i ntegral _constant ?

80

Safe Numerics

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

11.13.

Almost, but there are still good reasons to create a different type.

» std::integral _constant<int, 42>requiresspecification of type aswell asvalue so it'sless convenient than
safe_signed_literal which maps to the smallest type required to hold the value.

e std::nunmeric_linits<std::integral constant<int, 42>>::is_integer returnsfal se. Thiswould
complicate implementation of the library

» typetraiti s_saf e<std::integral _constant<int, 42>>would haveto bedefinedtoreturntrue.

» But globally altering thetraits of st d: : i nt egr al _const ant might have unintended side-effects related to other code.
These might well be surprises which are create errors which are hard to find and hard to work around.

Why is Boost.Convert not used?
| couldn't figure out how to use it from the documentation.
Why isthe library named "safe ..." rather than something like "checked ..." ?

| used "safe" in large part because thisis what has been used by other similar libraries. Maybe a better word might have
been "correct” but that would raise similar concerns. I'm not inclined to change this. I've tried to make it clear in the
documentation what the problem that the library addressed is.

Given that the library is called "numerics' why isfloating point arithmetic not addressed?

Actualy, | believe that this can/should be applied to any type T which satisfies the type requirement Nuner i ¢ type as
defined in the documentation. So there should be speciadizations saf e<f | oat > and related types as well as new typeslike
saf e<fi xed_deci mal > etc. But the current version of the library only addresses integer types. Hopefully the library will
evolve to match the promise implied by its name.

Isn't putting a defensive check just before any potential undefined behavior often considered a bad practice?

By whom? Is leaving code which can produce incorrect results better? Note that the documentation contains references
to various sources which recommend exactly this approach to mitigate the problems created by this C/C++ behavior. See
[Seacord]

It looks like the implementation presumes two's complement arithmetic at the hardware level. So thislibrary is not
portable - correct? What about other hardware architectures?

Asfar asisknown as of thiswriting, the library does not presume that the underlying hardware is two's complement.
However, this has yet to be verified in any rigorous way.

According to C/C++ standards, unsi gned i nt eger s cannot overflow - they are modular integers which "wrap around".
Y et the safe numerics library detects and traps this behavior as errors. Why isthat?

The guiding purpose of the library isto trap incorrect arithmetic behavior - not just undefined behavior. Although a savvy

user may understand and keep present in his mind that an unsigned integer isreally amodular type, the plain reading of an
arithmetic expression conveys the idea that all operands are common integers. Also in many cases, unsi gned i nt egers
are used in cases where modular arithmetic is not intended, such as array indices. Finaly, the modulus for such an integer

would vary depending upon the machine architecture. For these reasons, in the context of this library, an unsi gned

i nt eger isconsidered to be arepresentation of a subset of integers. Note that this decision is consistent with [INT30-C],

“Ensure that unsigned integer operations do not wrap” in the CERT C Secure Coding Standard [Seacord].

Why does the library require C++14?

The original version of the library used C++11. Feedback from CPPCon, Boost Library Incubator and Boost devel oper's
mailing list convinced methat | had to address the issue of run-time penalty much more serioudly. | resolved to eliminate
or minimizeit. This led to more elaborate meta-programming. But this wasn't enough. It became apparent that the only

81

http://www.blincubator.com

Safe Numerics

11.14.

11.15.

way to really minimize run-time penalty was to implement compile-time integer range arithmetic - a pretty elaborate sub
library. By doing range arithmetic at compile-time, | could skip runtime checking on many/most integer operations. While
C++11 const expr wasn't quite powerful enough to do the job, C++14 const expr is. Thelibrary currently relies very
heavily on C++14 const expr . | think that those who delve into the library will be very surprised at the extent that minor
changes in user code can produce guaranteed correct integer code with zero run-time penalty.

ThisisaC++ library - yet you refer to C/C++. Which isit?

C++ has evolved way beyond the original C language. But C++ is still (mostly) compatible with C. So most C programs
can be compiled with a C++ compiler. The problems of incorrect arithmetic afflict both C and C++. Suppose we have a
legacy C program designed for some embedded system.

* Replaceadl i nt declarationswithint 16_t and al | ong declarationswithi nt 32_t .

 Create afile containing something like the following and include it at the beginning of every sourcefile.

#i f def TEST

[/ using C++ on test platform

#i ncl ude <cstdint>

#i ncl ude <boost/ nuneric/safe_nunerics/safe_i nteger. hpp>
#i ncl ude <cpp. hpp>

usi ng pi cl6_pronotion = boost:: numeric::cpp<

8, [/ char
8, // short
8, [// int
16, // long

32 // long |ong
>,
/1 define safe types used in the desktop version of the program
tenmpl ate <typename T> // T is char, int, etc data type
using safe_t = boost::nuneric::safe<
T,
pi c16_pronoti on,
boost: : numeric::default_exception_policy // use for conpiling and running tests
>,
typedef safe_t<std::int_leastl6 t> int16_t;
typedef safe_t<std::int_least32_t> int32_t;
#el se
/* using C on enbedded platform*/
typedef int int_|eastl6_ t;
typedef long int_|eastl6 t;
#endi f

e Compile tests on the desktop with a C++14 compiler and with the macro TEST defined.
* Run thetests and change the code to address any thrown exceptions.
e Compilefor thetarget C platform with the macro TEST undefined.

This example illustrates how this library, implemented with C++14 can be useful in the development of correct code for
programs writtenin C.

Some compilers (including gcc and clang) include builtin functions for checked addition, multiplication, etc. Does this
library use these intrinsics?

No. | attempted to use these but they are currently not const expr . So | couldn't use these without breaking const expr
compatibility for the safe numerics primitives.

82

Safe Numerics

11.16. Some compilers (including gec and clang) included a builtin function for detecting constants. This seemed attractive
to eliminate the requirement for the safe literal type. Alas, these builtin functions are defined as macros. Constants
passed through functions down into the safe numerics library cannot be detected as constants. So the opportunity to
make the library even more efficient by moving more operations to compile time doesn't exist - contrary to my hopes and
expections.

12. Pending Issues

Thelibrary is under development. There are a number of issues still pending.

12.1. sare_base ONly Works for Scalar Types

The following is paraphrased from an issue raised by Andrzej Krzemie#ski as a github issue. It touches upon fundamental ideas
behind the library and how these ideas as the implementation of the library collided with redlity.

“In the current implementation safe<T> will only work with T being a C++ scalar type. Therefore making a general type
requirements that say what operations are allowed is superfluous, and confusing (because it implies that safe<> is more generic.”

When | started out, It became clear that | wanted "safe" typesto look like "numeric” types. It also became clear pretty soon that
there was going to be significant template meta-programming in the implementation. Normal type traits like std::is_integer are
defined in the std namespace and one is discouraged from extending it. Also | needed some compile time "max" and "lowest"
values. This|lead meto base the design on std::numeric_limits. But std::numeric limitsis inherently extensible to any "numeric"
type. For example, money is a numeric type but not an intrinsic types. So it seemed that | needed to define a"numeric" concept
which required that there be an implementation of std::numeric_limits for any type T - such as money in this case. When I'm
doubt - | tend to think big.

For now though I'm not going to addressiit. For what it's worth, my preference would be to do something like:

tenpl at e<t ypenane T>
struct range {
T m_| owest ;
T m_hi ghest;
/1 default inplenmentation
range(
const & T t_mn,
const & T t_max

m | owest (std::nunmeric_|limts<T>: :lowest(t_mn),
m_hi ghest (std:: nuneric_limts<T>::nmax(t_max)

{}
I

Then redeclare saf e_base, €tc., accordingly.

Also not that for C++20, template value parameters are no longer restricted to integer primitive types buy maybe class types as
well. This means the library maybe extended to user class types without changing the current template signatures.

12.2. Concepts are Defined but Not Enforced.

The following is paraphrased from an issue raised by Andrzej Krzemiettski as a github issue.

“Y ou do not need a concept to constrain anything with it, in your library. Or is the purpose of the Type requirements to show in
detail what it means that safe<T> isa'drop-in replacement for T?’

83

https://github.com/robertramey/safe_numerics/issues/44
https://github.com/robertramey/safe_numerics/issues/46

Safe Numerics

Right - currently | don't use the concept to constrain anything. They are currently a purely "conceptua” tool to keep the design
from getting off track. Thisis common with other libraries such as the C++ standard library where the concepts are defined but
not enforced by compile time predicates. Hopefully in future that might change - see below

“If you want to extend safe<T> for other integer types, Type requirement still need to be fixed:”

Hmmmm - I'm not quite sure that thisistrue. One thing that IS true is the the interface and implementation of the library

will need to be enhanced to permit "safe" to be applied to user defined types. Thisis apparent now, but as my brain can only
comprehend the library one piece at atime, this design feature was lost during the implementation. In implementing co-existence
of floats with safe integers, | did refactor the implementation in away which | believe my eventually permit the application to any
user supplied T which implements all the required operations of Numeric types. So asit is now thisis pending. If the library were
to become widely used, there might be motivation to do this. Time will tell. So for now I'm leaving these in the documentation
and code, even though they are not actually used.

12.3. Other Pending Issues

» Thelibrary iscurrently limited to integers. If there isinterest, it could be extended to floats and possible to user defined types.

* Although care has been taken to make the library portable, at least some parts of the implementation - particularly checked
integer arithmetic - depend upon two's complement representation of integers. Hence the library is probably not currently
portableto al other possible C++ architectures. These days, thisis unlikely to be alimitation in practice. Starting with C++20,
integer arithmetic will be guaranteed by the C++ standard to be two's complement.

e std::conmon_type isusedinavariety of generic libraries, including std::chrono. Without a specialization for saf e<T>s one
cannot use the safe wrappers e.g. as arepresentation for st d: : chr ono: : dur ati on.

13. Acknowledgements

Thislibrary would never have been created without inspiration, collaboration and constructive criticism from multiple sources.

David LeBlanc Thislibrary isinspired by David LeBlanc's Safelnt Library . | found thislibrary very well
donein every way and useful in my embedded systems work. This motivated me to takeit to
the "next level".

Andrzegj Krzemienski Andrzej Commented and reviewed the library asit was originally posted on the Boost Library

Incubator. The consequent back and forth motivated me to invest more effort in developing
documentation and examples to justify the utility, indeed the necessity, for thislibrary. He
also noted many errors in code, documentation, and tests. Without hisinterest and effort, | do
not believe the library would have progressed beyond itsinitial stages.

Boost As always, the Boost Devel oper's mailing list has been the source of many useful
observations from potential users and constructive criticism from very knowledgeable

developers. During the Boost formal review, reviews and comments were posted by the
following persons:

e Paul A. Bristow

» Steven Watanabe

John Maddock

Antony Polukhin

Barrett Adair

http://safeint.codeplex.com
https://akrzemi1.wordpress.com
http://www.blincubator.com
http://www.blincubator.com
http://www.boost.org

Safe Numerics

» Vicente J. Botet Escriba
¢ John McFarlane

» Peter Dimov

14. Release Log

Thisisthe third version.

Revision History

Revision 1.69 29 September 2018
First Boost Release
Revision 1.70 9 March 2019

Fixed Exception Policiesfor t rap andi gnor e.
15. Bibliography
Bibliography

[Coker] Zack Coker. Samir Hasan. Jeffrey Overbey. Munawar Hafiz. Christian Késtner. Integersin C: An Open Invitation To
Security Attacks? . JTC1/SC22/WG21 - The C++ Standards Committee - ISOCPP . January 15, 2012.

[Cook] John D. Cook. |EEE floating-point exceptionsin C++ .

[Crowl] Lawrence Crowl. C++ Binary Fixed-Point Arithmetic . JTC1/SC22/WG21 - The C++ Standards Committee - ISOCPP
. January 15, 2012.

[Crowl & Ottosen] Lawrence Crowl. Thorsten Ottosen. Proposal to add Contract Programming to C++ . WG21/N1962 and
J16/06-0032 - The C++ Standards Committee - ISOCPP . February 25, 2006.

[Dietz] Will Dietz. Peng Li. John Regehr. Vikram Adve. Understanding Integer Overflow in C/C++ . Proceedings of the 34th
International Conference on Software Engineering (ICSE), Zurich, Switzerland . June 2012.

[Garcia] J. Daniel Garcia. C++ language support for contract programming . WG21/N4293 - The C++ Standards Committee -
|SOCPP . December 23, 2014.

[Goldberg] David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing
Surveys. March, 1991.

[Katz] Omer Katz. Safelnt code proposal . Boost Developer's List .

[keaton] David Keaton. Thomas Plum. Robert C. Seacord. David Svoboda. Alex Volkovitsky. Timothy Wilson. As-if Infinitely
Ranged Integer Model . Software Engineering Institute . CMU/SEI-2009-TN-023.

[LeBlanc] David LeBlanc. Integer Handling with the C++ Safelnt Class. Microsoft Devel oper Network . January 7, 2004.
[LeBlanc] David LeBlanc. Safelnt. CodePlex . Dec 3, 2014.

[Lions] Jacques-LouisLions. Ariane 501 Inquiry Board report . Wikisource . July 19, 1996.

[Matthews] Hubert Matthews. Checkedint: A Policy-Based Range-Checked Integer . Overload Journal #58 . December 2003.

[Mouawad] Jad Mouawad. F.A.A Orders Fix for Possible Power Lossin Boeing 787 . New York Times. April 30, 2015.

85

https://www.cs.cmu.edu/~ckaestne/pdf/csse14-01.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://www.cs.cmu.edu/~ckaestne/pdf/csse14-01.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
https://www.johndcook.com/blog/ieee_exceptions_in_cpp/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4293.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://csur.acm.org/index.cfm
https://csur.acm.org/index.cfm
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.sei.cmu.edu
https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://www.cert.org
https://safeint.codeplex.com
https://www.cert.org
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Main_Page
https://accu.org/index.php/journals/324
https://accu.org/index.php
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?

Safe Numerics

[Plakosh] Daniel Plakosh. Safe Integer Operations. U.S. Department of Homeland Security . May 10, 2013.

[Seacord] Robert C. Seacord. Secure Coding in C and C++ . 2nd Edition. Addison-Wesley Professional. April 12, 2013.
978-0321822130.

[INT30-C] Robert C. Seacord. INT30-C. Ensure that operations on unsigned integers do not wrap . Software Engineering
Ingtitute, Carnegie Mellon University . August 17, 2014.

[INT32-C] Robert C. Seacord. INT32-C. Ensure that operations on signed integers do not result in overflow . Software
Engineering Institute, Carnegie Mellon University . August 17, 2014.

[Stone] David Stone. C++ Bounded Integer Library .

[Stroustrup] Bjarn Stroustrup. The C++ Programming Language. Fourth Edition. Addison-Wesley . Copyright © 2014 by
Pearson Education, Inc.. January 15, 2012.

[Forum] Forum Posts. C++ Binary Fixed-Point Arithmetic . SO C++ Standard Future Proposals .

86

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.cert.org
https://www.cert.org
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.cert.org
https://www.cert.org
http://doublewise.net/c++/bounded/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals

	Chapter 1. Safe Numerics
	Table of Contents
	1. Introduction
	1.1. Problem
	1.2. Solution
	1.3. How It Works
	1.4. Additional Features
	1.5. Requirements
	1.6. Scope

	2. Tutorial and Motivating Examples
	2.1. Arithmetic Expressions Can Yield Incorrect Results
	2.2. Arithmetic Operations Can Overflow Silently
	2.3. Arithmetic on Unsigned Integers Can Yield Incorrect Results
	2.4. Implicit Conversions Can Lead to Erroneous Results
	2.5. Mixing Data Types Can Create Subtle Errors
	2.6. Array Index Value Can Exceed Array Limits
	2.7. Checking of Input Values Can Be Easily Overlooked
	2.8. Cannot Recover From Arithmetic Errors
	2.9. Compile Time Arithmetic is Not Always Correct
	2.10. Programming by Contract is Too Slow

	3. Eliminating Runtime Penalty
	3.1. Using safe_range and safe_literal
	3.2. Using Automatic Type Promotion
	3.3. Mixing Approaches

	4. Case Studies
	4.1. Composition with Other Libraries
	4.2. Safety Critical Embedded Controller
	How a Stepper Motor Works
	Updating the Code
	Refactor for Testing
	Compiling on the Desktop
	Trapping Errors at Compile Time
	Summary

	5. Background
	6. Type Requirements
	6.1. Numeric<T>
	Description
	Notation
	Associated Types
	Valid Expressions
	Models
	Header
	Note on Usage of std::numeric_limits

	6.2. Integer<T>
	Description
	Refinement of
	Notation
	Valid Expressions
	Models
	Header

	6.3. SafeNumeric<T>
	Description
	Refinement of
	Notation
	Valid Expressions
	Invariants
	Models
	Header

	6.4. PromotionPolicy<PP>
	Description
	Notation
	Valid Expressions
	Models
	Header

	6.5. ExceptionPolicy<EP>
	Description
	Notation
	Valid Expressions
	dispatch<EP>(const safe_numerics_error & e, const char * msg)
	Synopsis
	Example of use

	Models
	Header

	7. Types
	7.1. safe<T, PP, EP>
	Description
	Model of
	Notation
	Associated Types
	Template Parameters
	Valid Expressions
	Examples of use
	As a Drop-in replacement for standard integer types.
	Adjust type promotion rules.

	Header

	7.2. safe_signed_range<MIN, MAX, PP, EP> and safe_unsigned_range<MIN, MAX, PP, EP>
	Description
	Notation
	Associated Types
	Template Parameters
	Model of
	Valid Expressions
	Example of use
	Header

	7.3. safe_signed_literal<Value, PP , EP> and safe_unsigned_literal<Value, PP, EP>
	Description
	Model of
	Associated Types
	Template Parameters
	Inherited Valid Expressions
	Example of use
	make_safe_literal(n, PP, EP)
	Header

	7.4. exception
	Description
	enum class safe_numerics_error
	enum class safe_numerics_actions
	See Also
	Header

	7.5. exception_policy<AE, IDB, UB, UV>
	Description
	Notation
	Template Parameters
	Model of
	Inherited Valid Expressions
	Function Objects
	Policies Provided by the library
	Header

	7.6. Promotion Policies
	native
	Description
	Model of
	Example of use
	Notes
	Header

	automatic
	Description
	Model of
	Example of use
	Header

	cpp<int C, int S, int I, int L, int LL>
	Description
	Template Parameters
	Model of
	Example of Use
	Header

	8. Exception Safety
	9. Library Implementation
	9.1. checked_result<R>
	Description
	Notation
	Template Parameters
	Model of
	Valid Expressions
	Example of use
	See Also
	Header

	9.2. Checked Arithmetic
	Description
	Type requirements
	Complexity
	Example of use
	Notes
	Synopsis
	See Also
	Header

	9.3. interval<R>
	Description
	Template Parameters
	Notation
	Associated Types
	Valid Expressions
	Example of use
	Header

	9.4. safe_compare<T, U>
	Synopsis
	Description
	Type requirements
	Complexity
	Example of use
	Header

	10. Performance Tests
	11. Rationale and FAQ
	12. Pending Issues
	12.1. safe_base Only Works for Scalar Types
	12.2. Concepts are Defined but Not Enforced.
	12.3. Other Pending Issues

	13. Acknowledgements
	14. Release Log
	15. Bibliography
	Bibliography

